1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
/* jn.c
*
* Bessel function of integer order
*
*
*
* SYNOPSIS:
*
* int n;
* double x, y, jn();
*
* y = jn( n, x );
*
*
*
* DESCRIPTION:
*
* Returns Bessel function of order n, where n is a
* (possibly negative) integer.
*
* The ratio of jn(x) to j0(x) is computed by backward
* recurrence. First the ratio jn/jn-1 is found by a
* continued fraction expansion. Then the recurrence
* relating successive orders is applied until j0 or j1 is
* reached.
*
* If n = 0 or 1 the routine for j0 or j1 is called
* directly.
*
*
*
* ACCURACY:
*
* Absolute error:
* arithmetic range # trials peak rms
* DEC 0, 30 5500 6.9e-17 9.3e-18
* IEEE 0, 30 5000 4.4e-16 7.9e-17
*
*
* Not suitable for large n or x. Use jv() instead.
*
*/
/* jn.c
Cephes Math Library Release 2.8: June, 2000
Copyright 1984, 1987, 2000 by Stephen L. Moshier
*/
#include "mconf.h"
#ifdef ANSIPROT
extern double fabs ( double );
extern double j0 ( double );
extern double j1 ( double );
#else
double fabs(), j0(), j1();
#endif
extern double MACHEP;
double jn( n, x )
int n;
double x;
{
double pkm2, pkm1, pk, xk, r, ans;
int k, sign;
if( n < 0 )
{
n = -n;
if( (n & 1) == 0 ) /* -1**n */
sign = 1;
else
sign = -1;
}
else
sign = 1;
if( x < 0.0 )
{
if( n & 1 )
sign = -sign;
x = -x;
}
if( n == 0 )
return( sign * j0(x) );
if( n == 1 )
return( sign * j1(x) );
if( n == 2 ) {
if (x < 1e-5) {
double y = x*x;
return sign * 0.125 * y * (1 - y / 12.);
} else {
return( sign * (2.0 * j1(x) / x - j0(x)) );
}
}
if( x < MACHEP )
return( 0.0 );
/* continued fraction */
#ifdef DEC
k = 56;
#else
k = 53;
#endif
pk = 2 * (n + k);
ans = pk;
xk = x * x;
do
{
pk -= 2.0;
ans = pk - (xk/ans);
}
while( --k > 0 );
ans = x/ans;
/* backward recurrence */
pk = 1.0;
pkm1 = 1.0/ans;
k = n-1;
r = 2 * k;
do
{
pkm2 = (pkm1 * r - pk * x) / x;
pk = pkm1;
pkm1 = pkm2;
r -= 2.0;
}
while( --k > 0 );
if( fabs(pk) > fabs(pkm1) )
ans = j1(x)/pk;
else
ans = j0(x)/pkm1;
return( sign * ans );
}
|