File: test_vq.py

package info (click to toggle)
python-scipy 0.6.0-12
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 32,016 kB
  • ctags: 46,675
  • sloc: cpp: 124,854; ansic: 110,614; python: 108,664; fortran: 76,260; objc: 424; makefile: 384; sh: 10
file content (152 lines) | stat: -rw-r--r-- 4,951 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#! /usr/bin/env python

# David Cournapeau
# Last Change: Tue Jul 03 08:00 PM 2007 J

# For now, just copy the tests from sandbox.pyem, so we can check that
# kmeans works OK for trivial examples.

import sys
from numpy.testing import *

import numpy as N

set_package_path()
from cluster.vq import kmeans, kmeans2, py_vq, py_vq2, _py_vq_1d, vq, ClusterError
try:
    from cluster import _vq
    TESTC=True
except ImportError:
    print "== Error while importing _vq, not testing C imp of vq =="
    TESTC=False
restore_path()

import os.path
#Optional:
set_local_path()
# import modules that are located in the same directory as this file.
DATAFILE1 = os.path.join(sys.path[0], "data.txt")
restore_path()

# Global data
X   = N.array([[3.0, 3], [4, 3], [4, 2],
               [9, 2], [5, 1], [6, 2], [9, 4],
               [5, 2], [5, 4], [7, 4], [6, 5]])

CODET1  = N.array([[3.0000, 3.0000],
                   [6.2000, 4.0000],
                   [5.8000, 1.8000]])

CODET2  = N.array([[11.0/3, 8.0/3],
                   [6.7500, 4.2500],
                   [6.2500, 1.7500]])

LABEL1  = N.array([0, 1, 2, 2, 2, 2, 1, 2, 1, 1, 1])

class test_vq(NumpyTestCase):
    def check_py_vq(self, level=1):
        initc = N.concatenate(([[X[0]], [X[1]], [X[2]]]))
        code = initc.copy()
        label1 = py_vq(X, initc)[0]
        assert_array_equal(label1, LABEL1)

    def check_py_vq2(self, level=1):
        initc = N.concatenate(([[X[0]], [X[1]], [X[2]]]))
        code = initc.copy()
        label1 = py_vq2(X, initc)[0]
        assert_array_equal(label1, LABEL1)

    def check_vq(self, level=1):
        initc = N.concatenate(([[X[0]], [X[1]], [X[2]]]))
        code = initc.copy()
        if TESTC:
            label1, dist = _vq.vq(X, initc)
            assert_array_equal(label1, LABEL1)
            tlabel1, tdist = vq(X, initc)
        else:
            print "== not testing C imp of vq =="

    #def check_py_vq_1d(self, level=1):
    #    """Test special rank 1 vq algo, python implementation."""
    #    data = X[:, 0]
    #    initc = data[:3]
    #    code = initc.copy()
    #    a, b = _py_vq_1d(data, initc)
    #    ta, tb = py_vq(data[:, N.newaxis], initc[:, N.newaxis])
    #    assert_array_equal(a, ta)
    #    assert_array_equal(b, tb)

    def check_vq_1d(self, level=1):
        """Test special rank 1 vq algo, python implementation."""
        data = X[:, 0]
        initc = data[:3]
        code = initc.copy()
        if TESTC:
            a, b = _vq.vq(data, initc)
            ta, tb = py_vq(data[:, N.newaxis], initc[:, N.newaxis])
            assert_array_equal(a, ta)
            assert_array_equal(b, tb)
        else:
            print "== not testing C imp of vq (rank 1) =="

class test_kmean(NumpyTestCase):
    def check_kmeans_simple(self, level=1):
        initc = N.concatenate(([[X[0]], [X[1]], [X[2]]]))
        code = initc.copy()
        code1 = kmeans(X, code, iter = 1)[0]

        assert_array_almost_equal(code1, CODET2)

    def check_kmeans_lost_cluster(self, level=1):
        """This will cause kmean to have a cluster with no points."""
        data = N.fromfile(open(DATAFILE1), sep = ", ")
        data = data.reshape((200, 2))
        initk = N.array([[-1.8127404, -0.67128041],
                         [ 2.04621601, 0.07401111],
                         [-2.31149087,-0.05160469]])

        res = kmeans(data, initk)
        res = kmeans2(data, initk, missing = 'warn')
        try :
            res = kmeans2(data, initk, missing = 'raise')
            raise AssertionError("Exception not raised ! Should not happen")
        except ClusterError, e:
            print "exception raised as expected: " + str(e)

    def check_kmeans2_simple(self, level=1):
        """Testing simple call to kmeans2 and its results."""
        initc = N.concatenate(([[X[0]], [X[1]], [X[2]]]))
        code = initc.copy()
        code1 = kmeans2(X, code, iter = 1)[0]
        code2 = kmeans2(X, code, iter = 2)[0]

        assert_array_almost_equal(code1, CODET1)
        assert_array_almost_equal(code2, CODET2)

    def check_kmeans2_rank1(self, level=1):
        """Testing simple call to kmeans2 with rank 1 data."""
        data = N.fromfile(open(DATAFILE1), sep = ", ")
        data = data.reshape((200, 2))
        data1 = data[:, 0]
        data2 = data[:, 1]

        initc = data1[:3]
        code = initc.copy()
        code1 = kmeans2(data1, code, iter = 1)[0]
        code2 = kmeans2(data1, code, iter = 2)[0]

    def check_kmeans2_init(self, level = 1):
        """Testing that kmeans2 init methods work."""
        data = N.fromfile(open(DATAFILE1), sep = ", ")
        data = data.reshape((200, 2))

        kmeans2(data, 3, minit = 'random')
        kmeans2(data, 3, minit = 'points')

        # Check special case 1d
        data = data[:, :1]
        kmeans2(data, 3, minit = 'random')
        kmeans2(data, 3, minit = 'points')

if __name__ == "__main__":
    NumpyTest().run()