File: fitpack.py

package info (click to toggle)
python-scipy 0.6.0-12
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 32,016 kB
  • ctags: 46,675
  • sloc: cpp: 124,854; ansic: 110,614; python: 108,664; fortran: 76,260; objc: 424; makefile: 384; sh: 10
file content (997 lines) | stat: -rw-r--r-- 39,631 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
#!/usr/bin/env python
"""
fitpack (dierckx in netlib) --- A Python-C wrapper to FITPACK (by P. Dierckx).
        FITPACK is a collection of FORTRAN programs for curve and surface
        fitting with splines and tensor product splines.

See
 http://www.cs.kuleuven.ac.be/cwis/research/nalag/research/topics/fitpack.html
or
 http://www.netlib.org/dierckx/index.html

Copyright 2002 Pearu Peterson all rights reserved,
Pearu Peterson <pearu@cens.ioc.ee>
Permission to use, modify, and distribute this software is given under the
terms of the SciPy (BSD style) license.  See LICENSE.txt that came with
this distribution for specifics.

NO WARRANTY IS EXPRESSED OR IMPLIED.  USE AT YOUR OWN RISK.

Pearu Peterson

Running test programs:
    $ python fitpack.py 1 3    # run test programs 1, and 3
    $ python fitpack.py        # run all available test programs

TODO: Make interfaces to the following fitpack functions:
    For univariate splines: cocosp, concon, fourco, insert
    For bivariate splines: profil, regrid, parsur, surev
"""

__all__ = ['splrep', 'splprep', 'splev', 'splint', 'sproot', 'spalde',
    'bisplrep', 'bisplev', 'insert']
__version__ = "$Revision: 2762 $"[10:-1]
import _fitpack
from numpy import atleast_1d, array, ones, zeros, sqrt, ravel, transpose, \
     dot, sin, cos, pi, arange, empty, int32
myasarray = atleast_1d

# Try to replace _fitpack interface with
#  f2py-generated version
import dfitpack

_iermess = {0:["""\
    The spline has a residual sum of squares fp such that abs(fp-s)/s<=0.001""",None],
               -1:["""\
    The spline is an interpolating spline (fp=0)""",None],
               -2:["""\
    The spline is weighted least-squares polynomial of degree k.
    fp gives the upper bound fp0 for the smoothing factor s""",None],
               1:["""\
    The required storage space exceeds the available storage space.
    Probable causes: data (x,y) size is too small or smoothing parameter s is too small (fp>s).""",ValueError],
               2:["""\
    A theoretically impossible results when finding a smoothin spline
    with fp = s. Probably causes: s too small. (abs(fp-s)/s>0.001)""",ValueError],
               3:["""\
    The maximal number of iterations (20) allowed for finding smoothing
    spline with fp=s has been reached. Probably causes: s too small.
    (abs(fp-s)/s>0.001)""",ValueError],
               10:["""\
    Error on input data""",ValueError],
               'unknown':["""\
    An error occured""",TypeError]}

_iermess2 = {0:["""\
    The spline has a residual sum of squares fp such that abs(fp-s)/s<=0.001""",None],
            -1:["""\
    The spline is an interpolating spline (fp=0)""",None],
            -2:["""\
    The spline is weighted least-squares polynomial of degree kx and ky.
    fp gives the upper bound fp0 for the smoothing factor s""",None],
            -3:["""\
    Warning. The coefficients of the spline have been computed as the minimal
    norm least-squares solution of a rank deficient system.""",None],
            1:["""\
    The required storage space exceeds the available storage space.
    Probably causes: nxest or nyest too small or s is too small. (fp>s)""",ValueError],
            2:["""\
    A theoretically impossible results when finding a smoothin spline
    with fp = s. Probably causes: s too small or badly chosen eps.
    (abs(fp-s)/s>0.001)""",ValueError],
            3:["""\
    The maximal number of iterations (20) allowed for finding smoothing
    spline with fp=s has been reached. Probably causes: s too small.
    (abs(fp-s)/s>0.001)""",ValueError],
            4:["""\
    No more knots can be added because the number of B-spline coefficients
    already exceeds the number of data points m. Probably causes: either
    s or m too small. (fp>s)""",ValueError],
            5:["""\
    No more knots can be added because the additional knot would coincide
    with an old one. Probably cause: s too small or too large a weight
    to an inaccurate data point. (fp>s)""",ValueError],
            10:["""\
    Error on input data""",ValueError],
            11:["""\
    rwrk2 too small, i.e. there is not enough workspace for computing
    the minimal least-squares solution of a rank deficient system of linear
    equations.""",ValueError],
            'unknown':["""\
    An error occured""",TypeError]}

_parcur_cache = {'t': array([],float), 'wrk': array([],float),
                 'iwrk':array([],int32), 'u': array([],float),'ub':0,'ue':1}

def splprep(x,w=None,u=None,ub=None,ue=None,k=3,task=0,s=None,t=None,
            full_output=0,nest=None,per=0,quiet=1):
    """Find the B-spline representation of an N-dimensional curve.

    Description:

      Given a list of N rank-1 arrays, x, which represent a curve in N-dimensional
      space parametrized by u, find a smooth approximating spline curve g(u).
      Uses the FORTRAN routine parcur from FITPACK

    Inputs:

      x -- A list of sample vector arrays representing the curve.
      u -- An array of parameter values.  If not given, these values are
           calculated automatically as (M = len(x[0])):
           v[0] = 0
           v[i] = v[i-1] + distance(x[i],x[i-1])
           u[i] = v[i] / v[M-1]
      ub, ue -- The end-points of the parameters interval.  Defaults to
                u[0] and u[-1].
      k -- Degree of the spline.  Cubic splines are recommended.  Even values of
           k should be avoided especially with a small s-value.
           1 <= k <= 5.
      task -- If task==0 find t and c for a given smoothing factor, s.
              If task==1 find t and c for another value of the smoothing factor,
                s. There must have been a previous call with task=0 or task=1
                for the same set of data.
              If task=-1 find the weighted least square spline for a given set of
                knots, t.
      s -- A smoothing condition.  The amount of smoothness is determined by
           satisfying the conditions: sum((w * (y - g))**2,axis=0) <= s where
           g(x) is the smoothed interpolation of (x,y).  The user can use s to
           control the tradeoff between closeness and smoothness of fit.  Larger
           s means more smoothing while smaller values of s indicate less
           smoothing. Recommended values of s depend on the weights, w.  If the
           weights represent the inverse of the standard-deviation of y, then a
           good s value should be found in the range (m-sqrt(2*m),m+sqrt(2*m))
           where m is the number of datapoints in x, y, and w.
      t -- The knots needed for task=-1.
      full_output -- If non-zero, then return optional outputs.
      nest -- An over-estimate of the total number of knots of the spline to
              help in determining the storage space.  By default nest=m/2.
              Always large enough is nest=m+k+1.
      per -- If non-zero, data points are considered periodic with period
             x[m-1] - x[0] and a smooth periodic spline approximation is returned.
             Values of y[m-1] and w[m-1] are not used.
      quiet -- Non-zero to suppress messages.

    Outputs: (tck, u, {fp, ier, msg})

      tck -- (t,c,k) a tuple containing the vector of knots, the B-spline
             coefficients, and the degree of the spline.
      u -- An array of the values of the parameter.

      fp -- The weighted sum of squared residuals of the spline approximation.
      ier -- An integer flag about splrep success.  Success is indicated
             if ier<=0. If ier in [1,2,3] an error occurred but was not raised.
             Otherwise an error is raised.
      msg -- A message corresponding to the integer flag, ier.

    Remarks:

      SEE splev for evaluation of the spline and its derivatives.

    See also:
      splrep, splev, sproot, spalde, splint - evaluation, roots, integral
      bisplrep, bisplev - bivariate splines
      UnivariateSpline, BivariateSpline - an alternative wrapping 
              of the FITPACK functions
    """
    if task<=0:
        _parcur_cache = {'t': array([],float), 'wrk': array([],float),
                         'iwrk':array([],int32),'u': array([],float),
                         'ub':0,'ue':1}
    x=myasarray(x)
    idim,m=x.shape
    if per:
        for i in range(idim):
            if x[i][0]!=x[i][-1]:
                if quiet<2:print 'Warning: Setting x[%d][%d]=x[%d][0]'%(i,m,i)
                x[i][-1]=x[i][0]
    if not 0<idim<11: raise TypeError,'0<idim<11 must hold'
    if w is None: w=ones(m,float)
    else: w=myasarray(w)
    ipar=(u is not None)
    if ipar:
        _parcur_cache['u']=u
        if ub is None: _parcur_cache['ub']=u[0]
        else: _parcur_cache['ub']=ub
        if ue is None: _parcur_cache['ue']=u[-1]
        else: _parcur_cache['ue']=ue
    else: _parcur_cache['u']=zeros(m,float)
    if not (1<=k<=5): raise TypeError, '1<=k=%d<=5 must hold'%(k)
    if not (-1<=task<=1): raise TypeError, 'task must be either -1,0, or 1'
    if (not len(w)==m) or (ipar==1 and (not len(u)==m)):
        raise TypeError,'Mismatch of input dimensions'
    if s is None: s=m-sqrt(2*m)
    if t is None and task==-1: raise TypeError, 'Knots must be given for task=-1'
    if t is not None:
        _parcur_cache['t']=myasarray(t)
    n=len(_parcur_cache['t'])
    if task==-1 and n<2*k+2:
        raise TypeError, 'There must be at least 2*k+2 knots for task=-1'
    if m<=k: raise TypeError, 'm>k must hold'
    if nest is None: nest=m+2*k

    if (task>=0 and s==0) or (nest<0):
        if per: nest=m+2*k
        else: nest=m+k+1
    nest=max(nest,2*k+3)
    u=_parcur_cache['u']
    ub=_parcur_cache['ub']
    ue=_parcur_cache['ue']
    t=_parcur_cache['t']
    wrk=_parcur_cache['wrk']
    iwrk=_parcur_cache['iwrk']
    t,c,o=_fitpack._parcur(ravel(transpose(x)),w,u,ub,ue,k,task,ipar,s,t,
                             nest,wrk,iwrk,per)
    _parcur_cache['u']=o['u']
    _parcur_cache['ub']=o['ub']
    _parcur_cache['ue']=o['ue']
    _parcur_cache['t']=t
    _parcur_cache['wrk']=o['wrk']
    _parcur_cache['iwrk']=o['iwrk']
    ier,fp,n=o['ier'],o['fp'],len(t)
    u=o['u']
    c.shape=idim,n-k-1
    tcku = [t,list(c),k],u
    if ier<=0 and not quiet:
        print _iermess[ier][0]
        print "\tk=%d n=%d m=%d fp=%f s=%f"%(k,len(t),m,fp,s)
    if ier>0 and not full_output:
        if ier in [1,2,3]:
            print "Warning: "+_iermess[ier][0]
        else:
            try:
                raise _iermess[ier][1],_iermess[ier][0]
            except KeyError:
                raise _iermess['unknown'][1],_iermess['unknown'][0]
    if full_output:
        try:
            return tcku,fp,ier,_iermess[ier][0]
        except KeyError:
            return tcku,fp,ier,_iermess['unknown'][0]
    else:
        return tcku

_curfit_cache = {'t': array([],float), 'wrk': array([],float),
                 'iwrk':array([],int32)}
def splrep(x,y,w=None,xb=None,xe=None,k=3,task=0,s=None,t=None,
           full_output=0,per=0,quiet=1):
    """Find the B-spline representation of 1-D curve.

    Description:

      Given the set of data points (x[i], y[i]) determine a smooth spline
      approximation of degree k on the interval xb <= x <= xe.  The coefficients,
      c, and the knot points, t, are returned.  Uses the FORTRAN routine
      curfit from FITPACK.

    Inputs:

      x, y -- The data points defining a curve y = f(x).
      w -- Strictly positive rank-1 array of weights the same length as x and y.
           The weights are used in computing the weighted least-squares spline
           fit. If the errors in the y values have standard-deviation given by the
           vector d, then w should be 1/d. Default is ones(len(x)).
      xb, xe -- The interval to fit.  If None, these default to x[0] and x[-1]
                respectively.
      k -- The order of the spline fit.  It is recommended to use cubic splines.
           Even order splines should be avoided especially with small s values.
           1 <= k <= 5
      task -- If task==0 find t and c for a given smoothing factor, s.
              If task==1 find t and c for another value of the
                smoothing factor, s. There must have been a previous
                call with task=0 or task=1 for the same set of data
                (t will be stored an used internally)
              If task=-1 find the weighted least square spline for
                a given set of knots, t.  These should be interior knots
                as knots on the ends will be added automatically.
      s -- A smoothing condition.  The amount of smoothness is determined by
           satisfying the conditions: sum((w * (y - g))**2,axis=0) <= s where
           g(x) is the smoothed interpolation of (x,y).  The user can use s to
           control the tradeoff between closeness and smoothness of fit.  Larger
           s means more smoothing while smaller values of s indicate less
           smoothing. Recommended values of s depend on the weights, w.  If the
           weights represent the inverse of the standard-deviation of y, then a
           good s value should be found in the range (m-sqrt(2*m),m+sqrt(2*m))
           where m is the number of datapoints in x, y, and w.
           default : s=m-sqrt(2*m) if weights are supplied.
                     s = 0.0 (interpolating) if no weights are supplied.
      t -- The knots needed for task=-1.  If given then task is automatically
           set to -1.
      full_output -- If non-zero, then return optional outputs.
      per -- If non-zero, data points are considered periodic with period
             x[m-1] - x[0] and a smooth periodic spline approximation is returned.
             Values of y[m-1] and w[m-1] are not used.
      quiet -- Non-zero to suppress messages.

    Outputs: (tck, {fp, ier, msg})

      tck -- (t,c,k) a tuple containing the vector of knots, the B-spline
             coefficients, and the degree of the spline.

      fp -- The weighted sum of squared residuals of the spline approximation.
      ier -- An integer flag about splrep success.  Success is indicated if
             ier<=0. If ier in [1,2,3] an error occurred but was not raised.
             Otherwise an error is raised.
      msg -- A message corresponding to the integer flag, ier.

    Remarks:

      See splev for evaluation of the spline and its derivatives.
      
    Example:
        
      x = linspace(0, 10, 10)
      y = sin(x)
      tck = splrep(x, y)
      x2 = linspace(0, 10, 200)
      y2 = splev(x2, tck)
      plot(x, y, 'o', x2, y2)
      
    See also:
      splprep, splev, sproot, spalde, splint - evaluation, roots, integral
      bisplrep, bisplev - bivariate splines
      UnivariateSpline, BivariateSpline - an alternative wrapping 
              of the FITPACK functions
    """
    if task<=0:
        _curfit_cache = {}
    x,y=map(myasarray,[x,y])
    m=len(x)
    if w is None:
        w=ones(m,float)
        if s is None: s = 0.0
    else:
        w=myasarray(w)
        if s is None: s = m-sqrt(2*m)
    if not len(w) == m: raise TypeError,' len(w)=%d is not equal to m=%d'%(len(w),m)
    if (m != len(y)) or (m != len(w)):
        raise TypeError, 'Lengths of the first three arguments (x,y,w) must be equal'
    if not (1<=k<=5):
        raise TypeError, 'Given degree of the spline (k=%d) is not supported. (1<=k<=5)'%(k)
    if m<=k: raise TypeError, 'm>k must hold'     
    if xb is None: xb=x[0]
    if xe is None: xe=x[-1]
    if not (-1<=task<=1): raise TypeError, 'task must be either -1,0, or 1'
    if t is not None:
        task = -1
    if task == -1:
        if t is None: raise TypeError, 'Knots must be given for task=-1'
        numknots = len(t)
        _curfit_cache['t'] = empty((numknots + 2*k+2,),float)
        _curfit_cache['t'][k+1:-k-1] = t
        nest = len(_curfit_cache['t'])
    elif task == 0:
        if per:
            nest = max(m+2*k,2*k+3)
        else:
            nest = max(m+k+1,2*k+3)
        t = empty((nest,),float)
        _curfit_cache['t'] = t
    if task <= 0:
        if per: _curfit_cache['wrk'] = empty((m*(k+1)+nest*(8+5*k),),float)
        else: _curfit_cache['wrk'] = empty((m*(k+1)+nest*(7+3*k),),float)
        _curfit_cache['iwrk'] = empty((nest,),int32)
    try:
        t=_curfit_cache['t']
        wrk=_curfit_cache['wrk']
        iwrk=_curfit_cache['iwrk']
    except KeyError:
        raise TypeError, "must call with task=1 only after"\
              " call with task=0,-1"
    if not per:
        n,c,fp,ier = dfitpack.curfit(task, x, y, w, t, wrk, iwrk, xb, xe, k, s)
    else:
        n,c,fp,ier = dfitpack.percur(task, x, y, w, t, wrk, iwrk, k, s)
    tck = (t[:n],c[:n],k)
    if ier<=0 and not quiet:
        print _iermess[ier][0]
        print "\tk=%d n=%d m=%d fp=%f s=%f"%(k,len(t),m,fp,s)
    if ier>0 and not full_output:
        if ier in [1,2,3]:
            print "Warning: "+_iermess[ier][0]
        else:
            try:
                raise _iermess[ier][1],_iermess[ier][0]
            except KeyError:
                raise _iermess['unknown'][1],_iermess['unknown'][0]
    if full_output:
        try:
            return tck,fp,ier,_iermess[ier][0]
        except KeyError:
            return tck,fp,ier,_iermess['unknown'][0]
    else:
        return tck

def _ntlist(l): # return non-trivial list
    return l
    #if len(l)>1: return l
    #return l[0]

def splev(x,tck,der=0):
    """Evaulate a B-spline and its derivatives.

    Description:

      Given the knots and coefficients of a B-spline representation, evaluate
      the value of the smoothing polynomial and it's derivatives.
      This is a wrapper around the FORTRAN routines splev and splder of FITPACK.

    Inputs:

      x (u) -- a 1-D array of points at which to return the value of the
               smoothed spline or its derivatives.  If tck was returned from
               splprep, then the parameter values, u should be given.
      tck -- A sequence of length 3 returned by splrep or splprep containg the
             knots, coefficients, and degree of the spline.
      der -- The order of derivative of the spline to compute (must be less than
             or equal to k).

    Outputs: (y, )

      y -- an array of values representing the spline function or curve.
           If tck was returned from splrep, then this is a list of arrays
           representing the curve in N-dimensional space.

    See also:
      splprep, splrep, sproot, spalde, splint - evaluation, roots, integral
      bisplrep, bisplev - bivariate splines
      UnivariateSpline, BivariateSpline - an alternative wrapping 
              of the FITPACK functions
    """
    t,c,k=tck
    try:
        c[0][0]
        parametric = True
    except:
        parametric = False
    if parametric:
        return map(lambda c,x=x,t=t,k=k,der=der:splev(x,[t,c,k],der),c)
    else:
      if not (0<=der<=k):
          raise ValueError,"0<=der=%d<=k=%d must hold"%(der,k)
      x=myasarray(x)
      y,ier=_fitpack._spl_(x,der,t,c,k)
      if ier==10: raise ValueError,"Invalid input data"
      if ier: raise TypeError,"An error occurred"
      if len(y)>1: return y
      return y[0]

def splint(a,b,tck,full_output=0):
    """Evaluate the definite integral of a B-spline.

    Description:

      Given the knots and coefficients of a B-spline, evaluate the definite
      integral of the smoothing polynomial between two given points.

    Inputs:

      a, b -- The end-points of the integration interval.
      tck -- A length 3 sequence describing the given spline (See splev).
      full_output -- Non-zero to return optional output.

    Outputs: (integral, {wrk})

      integral -- The resulting integral.
      wrk -- An array containing the integrals of the normalized B-splines defined
             on the set of knots.


    See also:
      splprep, splrep, sproot, spalde, splev - evaluation, roots, integral
      bisplrep, bisplev - bivariate splines
      UnivariateSpline, BivariateSpline - an alternative wrapping 
              of the FITPACK functions
    """
    t,c,k=tck
    try:
        c[0][0]
        parametric = True
    except:
        parametric = False
    if parametric:
        return _ntlist(map(lambda c,a=a,b=b,t=t,k=k:splint(a,b,[t,c,k]),c))
    else:
        aint,wrk=_fitpack._splint(t,c,k,a,b)
        if full_output: return aint,wrk
        else: return aint

def sproot(tck,mest=10):
    """Find the roots of a cubic B-spline.

    Description:

      Given the knots (>=8) and coefficients of a cubic B-spline return the
      roots of the spline.

    Inputs:

      tck -- A length 3 sequence describing the given spline (See splev).
             The number of knots must be >= 8.  The knots must be a montonically
             increasing sequence.
      mest -- An estimate of the number of zeros (Default is 10).

    Outputs: (zeros, )

      zeros -- An array giving the roots of the spline.

    See also:
      splprep, splrep, splint, spalde, splev - evaluation, roots, integral
      bisplrep, bisplev - bivariate splines
      UnivariateSpline, BivariateSpline - an alternative wrapping 
              of the FITPACK functions
    """
    t,c,k=tck
    if k==4: t=t[1:-1]
    if k==5: t=t[2:-2]
    try:
        c[0][0]
        parametric = True
    except:
        parametric = False
    if parametric:
        return _ntlist(map(lambda c,t=t,k=k,mest=mest:sproot([t,c,k],mest),c))
    else:
        if len(t)<8:
            raise TypeError,"The number of knots %d>=8"%(len(t))
        z,ier=_fitpack._sproot(t,c,k,mest)
        if ier==10:
            raise TypeError,"Invalid input data. t1<=..<=t4<t5<..<tn-3<=..<=tn must hold."
        if ier==0: return z
        if ier==1:
            print "Warning: the number of zeros exceeds mest"
            return z
        raise TypeError,"Unknown error"

def spalde(x,tck):
    """Evaluate all derivatives of a B-spline.

    Description:

      Given the knots and coefficients of a cubic B-spline compute all
      derivatives up to order k at a point (or set of points).

    Inputs:

      tck -- A length 3 sequence describing the given spline (See splev).
      x -- A point or a set of points at which to evaluate the derivatives.
           Note that t(k) <= x <= t(n-k+1) must hold for each x.

    Outputs: (results, )

      results -- An array (or a list of arrays) containing all derivatives
                 up to order k inclusive for each point x.

    See also:
      splprep, splrep, splint, sproot, splev - evaluation, roots, integral
      bisplrep, bisplev - bivariate splines
      UnivariateSpline, BivariateSpline - an alternative wrapping 
              of the FITPACK functions
    """
    t,c,k=tck
    try:
        c[0][0]
        parametric = True
    except:
        parametric = False
    if parametric:
        return _ntlist(map(lambda c,x=x,t=t,k=k:spalde(x,[t,c,k]),c))
    else:
      try: x=x.tolist()
      except:
          try: x=list(x)
          except: x=[x]
      if len(x)>1:
          return map(lambda x,tck=tck:spalde(x,tck),x)
      d,ier=_fitpack._spalde(t,c,k,x[0])
      if ier==0: return d
      if ier==10:
          raise TypeError,"Invalid input data. t(k)<=x<=t(n-k+1) must hold."
      raise TypeError,"Unknown error"

#def _curfit(x,y,w=None,xb=None,xe=None,k=3,task=0,s=None,t=None,
#           full_output=0,nest=None,per=0,quiet=1):

_surfit_cache = {'tx': array([],float),'ty': array([],float),
                 'wrk': array([],float), 'iwrk':array([],int32)}
def bisplrep(x,y,z,w=None,xb=None,xe=None,yb=None,ye=None,kx=3,ky=3,task=0,
             s=None,eps=1e-16,tx=None,ty=None,full_output=0,
             nxest=None,nyest=None,quiet=1):
    """Find a bivariate B-spline representation of a surface.

    Description:

      Given a set of data points (x[i], y[i], z[i]) representing a surface
      z=f(x,y), compute a B-spline representation of the surface.

    Inputs:

      x, y, z -- Rank-1 arrays of data points.
      w -- Rank-1 array of weights. By default w=ones(len(x)).
      xb, xe -- End points of approximation interval in x.
      yb, ye -- End points of approximation interval in y.
                By default xb, xe, yb, ye = x.min(), x.max(), y.min(), y.max()
      kx, ky -- The degrees of the spline (1 <= kx, ky <= 5).  Third order
                (kx=ky=3) is recommended.
      task -- If task=0, find knots in x and y and coefficients for a given
                smoothing factor, s.
              If task=1, find knots and coefficients for another value of the
                smoothing factor, s.  bisplrep must have been previously called
                with task=0 or task=1.
              If task=-1, find coefficients for a given set of knots tx, ty.
      s -- A non-negative smoothing factor.  If weights correspond
           to the inverse of the standard-deviation of the errors in z,
           then a good s-value should be found in the range
           (m-sqrt(2*m),m+sqrt(2*m)) where m=len(x)
      eps -- A threshold for determining the effective rank of an
             over-determined linear system of equations (0 < eps < 1)
             --- not likely to need changing.
      tx, ty -- Rank-1 arrays of the knots of the spline for task=-1
      full_output -- Non-zero to return optional outputs.
      nxest, nyest -- Over-estimates of the total number of knots.
                      If None then nxest = max(kx+sqrt(m/2),2*kx+3),
                                   nyest = max(ky+sqrt(m/2),2*ky+3)
      quiet -- Non-zero to suppress printing of messages.

    Outputs: (tck, {fp, ier, msg})

      tck -- A list [tx, ty, c, kx, ky] containing the knots (tx, ty) and
             coefficients (c) of the bivariate B-spline representation of the
             surface along with the degree of the spline.

      fp -- The weighted sum of squared residuals of the spline approximation.
      ier -- An integer flag about splrep success.  Success is indicated if
             ier<=0. If ier in [1,2,3] an error occurred but was not raised.
             Otherwise an error is raised.
      msg -- A message corresponding to the integer flag, ier.

    Remarks:

      SEE bisplev to evaluate the value of the B-spline given its tck
      representation.

    See also:
      splprep, splrep, splint, sproot, splev - evaluation, roots, integral
      UnivariateSpline, BivariateSpline - an alternative wrapping 
              of the FITPACK functions
    """
    x,y,z=map(myasarray,[x,y,z])
    x,y,z=map(ravel,[x,y,z])  # ensure 1-d arrays.
    m=len(x)
    if not (m==len(y)==len(z)): raise TypeError, 'len(x)==len(y)==len(z) must hold.'
    if w is None: w=ones(m,float)
    else: w=myasarray(w)
    if not len(w) == m: raise TypeError,' len(w)=%d is not equal to m=%d'%(len(w),m)
    if xb is None: xb=x.min()
    if xe is None: xe=x.max()
    if yb is None: yb=y.min()
    if ye is None: ye=y.max()
    if not (-1<=task<=1): raise TypeError, 'task must be either -1,0, or 1'
    if s is None: s=m-sqrt(2*m)
    if tx is None and task==-1: raise TypeError, 'Knots_x must be given for task=-1'
    if tx is not None: _surfit_cache['tx']=myasarray(tx)
    nx=len(_surfit_cache['tx'])
    if ty is None and task==-1: raise TypeError, 'Knots_y must be given for task=-1'
    if ty is not None: _surfit_cache['ty']=myasarray(ty)
    ny=len(_surfit_cache['ty'])
    if task==-1 and nx<2*kx+2:
        raise TypeError, 'There must be at least 2*kx+2 knots_x for task=-1'
    if task==-1 and ny<2*ky+2:
        raise TypeError, 'There must be at least 2*ky+2 knots_x for task=-1'
    if not ((1<=kx<=5) and (1<=ky<=5)):
        raise TypeError, 'Given degree of the spline (kx,ky=%d,%d) is not supported. (1<=k<=5)'%(kx,ky)
    if m<(kx+1)*(ky+1): raise TypeError, 'm>=(kx+1)(ky+1) must hold'
    if nxest is None: nxest=kx+sqrt(m/2)
    if nyest is None: nyest=ky+sqrt(m/2)
    nxest,nyest=max(nxest,2*kx+3),max(nyest,2*ky+3)
    if task>=0 and s==0:
        nxest=int(kx+sqrt(3*m))
        nyest=int(ky+sqrt(3*m))
    if task==-1:
        _surfit_cache['tx']=myasarray(tx)
        _surfit_cache['ty']=myasarray(ty)
    tx,ty=_surfit_cache['tx'],_surfit_cache['ty']
    wrk=_surfit_cache['wrk']
    iwrk=_surfit_cache['iwrk']
    u,v,km,ne=nxest-kx-1,nyest-ky-1,max(kx,ky)+1,max(nxest,nyest)
    bx,by=kx*v+ky+1,ky*u+kx+1
    b1,b2=bx,bx+v-ky
    if bx>by: b1,b2=by,by+u-kx
    lwrk1=u*v*(2+b1+b2)+2*(u+v+km*(m+ne)+ne-kx-ky)+b2+1
    lwrk2=u*v*(b2+1)+b2
    tx,ty,c,o = _fitpack._surfit(x,y,z,w,xb,xe,yb,ye,kx,ky,task,s,eps,
                                   tx,ty,nxest,nyest,wrk,lwrk1,lwrk2)
    _curfit_cache['tx']=tx
    _curfit_cache['ty']=ty
    _curfit_cache['wrk']=o['wrk']
    ier,fp=o['ier'],o['fp']
    tck=[tx,ty,c,kx,ky]
    if ier<=0 and not quiet:
        print _iermess2[ier][0]
        print "\tkx,ky=%d,%d nx,ny=%d,%d m=%d fp=%f s=%f"%(kx,ky,len(tx),
                                                           len(ty),m,fp,s)
    ierm=min(11,max(-3,ier))
    if ierm>0 and not full_output:
        if ier in [1,2,3,4,5]:
            print "Warning: "+_iermess2[ierm][0]
            print "\tkx,ky=%d,%d nx,ny=%d,%d m=%d fp=%f s=%f"%(kx,ky,len(tx),
                                                           len(ty),m,fp,s)
        else:
            try:
                raise _iermess2[ierm][1],_iermess2[ierm][0]
            except KeyError:
                raise _iermess2['unknown'][1],_iermess2['unknown'][0]
    if full_output:
        try:
            return tck,fp,ier,_iermess2[ierm][0]
        except KeyError:
            return tck,fp,ier,_iermess2['unknown'][0]
    else:
        return tck

def bisplev(x,y,tck,dx=0,dy=0):
    """Evaluate a bivariate B-spline and its derivatives.

    Description:

      Return a rank-2 array of spline function values (or spline derivative
      values) at points given by the cross-product of the rank-1 arrays x and y.
      In special cases, return an array or just a float if either x or y or
      both are floats.

    Inputs:

      x, y -- Rank-1 arrays specifying the domain over which to evaluate the
              spline or its derivative.
      tck -- A sequence of length 5 returned by bisplrep containing the knot
             locations, the coefficients, and the degree of the spline:
             [tx, ty, c, kx, ky].
      dx, dy -- The orders of the partial derivatives in x and y respectively.

    Outputs: (vals, )

      vals -- The B-pline or its derivative evaluated over the set formed by
              the cross-product of x and y.

    Remarks:

      SEE bisprep to generate the tck representation.

    See also:
      splprep, splrep, splint, sproot, splev - evaluation, roots, integral
      UnivariateSpline, BivariateSpline - an alternative wrapping 
              of the FITPACK functions
    """
    tx,ty,c,kx,ky=tck
    if not (0<=dx<kx): raise ValueError,"0<=dx=%d<kx=%d must hold"%(dx,kx)
    if not (0<=dy<ky): raise ValueError,"0<=dy=%d<ky=%d must hold"%(dy,ky)
    x,y=map(myasarray,[x,y])
    if (len(x.shape) != 1) or (len(y.shape) != 1):
        raise ValueError, "First two entries should be rank-1 arrays."
    z,ier=_fitpack._bispev(tx,ty,c,kx,ky,x,y,dx,dy)
    if ier==10: raise ValueError,"Invalid input data"
    if ier: raise TypeError,"An error occurred"
    z.shape=len(x),len(y)
    if len(z)>1: return z
    if len(z[0])>1: return z[0]
    return z[0][0]

def insert(x,tck,m=1,per=0):
    """Insert knots into a B-spline.

    Description:

      Given the knots and coefficients of a B-spline representation, create a 
      new B-spline with a knot inserted m times at point x.
      This is a wrapper around the FORTRAN routine insert of FITPACK.

    Inputs:

      x (u) -- A 1-D point at which to insert a new knot(s).  If tck was returned
               from splprep, then the parameter values, u should be given.
      tck -- A sequence of length 3 returned by splrep or splprep containg the
             knots, coefficients, and degree of the spline.
      m -- The number of times to insert the given knot (its multiplicity).
      per -- If non-zero, input spline is considered periodic.

    Outputs: tck

      tck -- (t,c,k) a tuple containing the vector of knots, the B-spline
             coefficients, and the degree of the new spline.
    
    Requirements:
        t(k+1) <= x <= t(n-k), where k is the degree of the spline.
        In case of a periodic spline (per != 0) there must be
           either at least k interior knots t(j) satisfying t(k+1)<t(j)<=x
           or at least k interior knots t(j) satisfying x<=t(j)<t(n-k).    
    """
    t,c,k=tck
    try:
        c[0][0]
        parametric = True
    except:
        parametric = False
    if parametric:
        cc = []
        for c_vals in c:
          tt, cc_val, kk = insert(x, [t, c_vals, k], m)
          cc.append(cc_val)
        return (tt, cc, kk)
    else:
        tt, cc, ier = _fitpack._insert(per, t, c, k, x, m)
        if ier==10: raise ValueError,"Invalid input data"
        if ier: raise TypeError,"An error occurred"
        return (tt, cc, k)

if __name__ == "__main__":
    import sys,string
    runtest=range(10)
    if len(sys.argv[1:])>0:
        runtest=map(string.atoi,sys.argv[1:])
    put=sys.stdout.write
    def norm2(x):
        return dot(transpose(x),x)
    def f1(x,d=0):
        if d is None: return "sin"
        if x is None: return "sin(x)"
        if d%4 == 0: return sin(x)
        if d%4 == 1: return cos(x)
        if d%4 == 2: return -sin(x)
        if d%4 == 3: return -cos(x)
    def f2(x,y=0,dx=0,dy=0):
        if x is None: return "sin(x+y)"
        d=dx+dy
        if d%4 == 0: return sin(x+y)
        if d%4 == 1: return cos(x+y)
        if d%4 == 2: return -sin(x+y)
        if d%4 == 3: return -cos(x+y)
    def test1(f=f1,per=0,s=0,a=0,b=2*pi,N=20,at=0,xb=None,xe=None):
        if xb is None: xb=a
        if xe is None: xe=b
        x=a+(b-a)*arange(N+1,dtype=float)/float(N)    # nodes
        x1=a+(b-a)*arange(1,N,dtype=float)/float(N-1) # middle points of the nodes
        v,v1=f(x),f(x1)
        nk=[]
        for k in range(1,6):
            tck=splrep(x,v,s=s,per=per,k=k,xe=xe)
            if at:t=tck[0][k:-k]
            else: t=x1
            nd=[]
            for d in range(k+1):
                nd.append(norm2(f(t,d)-splev(t,tck,d)))
            nk.append(nd)
        print "\nf = %s  s=S_k(x;t,c)  x in [%s, %s] > [%s, %s]"%(f(None),
                                                        `round(xb,3)`,`round(xe,3)`,
                                                          `round(a,3)`,`round(b,3)`)
        if at: str="at knots"
        else: str="at the middle of nodes"
        print " per=%d s=%s Evaluation %s"%(per,`s`,str)
        print " k :  |f-s|^2  |f'-s'| |f''-.. |f'''-. |f''''- |f'''''"
        k=1
        for l in nk:
            put(' %d : '%k)
            for r in l:
                put(' %.1e'%r)
            put('\n')
            k=k+1
    def test2(f=f1,per=0,s=0,a=0,b=2*pi,N=20,xb=None,xe=None,
              ia=0,ib=2*pi,dx=0.2*pi):
        if xb is None: xb=a
        if xe is None: xe=b
        x=a+(b-a)*arange(N+1,dtype=float)/float(N)    # nodes
        v=f(x)
        nk=[]
        for k in range(1,6):
            tck=splrep(x,v,s=s,per=per,k=k,xe=xe)
            nk.append([splint(ia,ib,tck),spalde(dx,tck)])
        print "\nf = %s  s=S_k(x;t,c)  x in [%s, %s] > [%s, %s]"%(f(None),
                                                   `round(xb,3)`,`round(xe,3)`,
                                                    `round(a,3)`,`round(b,3)`)
        print " per=%d s=%s N=%d [a, b] = [%s, %s]  dx=%s"%(per,`s`,N,`round(ia,3)`,`round(ib,3)`,`round(dx,3)`)
        print " k :  int(s,[a,b]) Int.Error   Rel. error of s^(d)(dx) d = 0, .., k"
        k=1
        for r in nk:
            if r[0]<0: sr='-'
            else: sr=' '
            put(" %d   %s%.8f   %.1e "%(k,sr,abs(r[0]),
                                         abs(r[0]-(f(ib,-1)-f(ia,-1)))))
            d=0
            for dr in r[1]:
                put(" %.1e "%(abs(1-dr/f(dx,d))))
                d=d+1
            put("\n")
            k=k+1
    def test3(f=f1,per=0,s=0,a=0,b=2*pi,N=20,xb=None,xe=None,
              ia=0,ib=2*pi,dx=0.2*pi):
        if xb is None: xb=a
        if xe is None: xe=b
        x=a+(b-a)*arange(N+1,dtype=float)/float(N)    # nodes
        v=f(x)
        nk=[]
        print "  k  :     Roots of s(x) approx %s  x in [%s,%s]:"%\
              (f(None),`round(a,3)`,`round(b,3)`)
        for k in range(1,6):
            tck=splrep(x,v,s=s,per=per,k=k,xe=xe)
            print '  %d  : %s'%(k,`sproot(tck).tolist()`)
    def test4(f=f1,per=0,s=0,a=0,b=2*pi,N=20,xb=None,xe=None,
              ia=0,ib=2*pi,dx=0.2*pi):
        if xb is None: xb=a
        if xe is None: xe=b
        x=a+(b-a)*arange(N+1,dtype=float)/float(N)    # nodes
        x1=a+(b-a)*arange(1,N,dtype=float)/float(N-1) # middle points of the nodes
        v,v1=f(x),f(x1)
        nk=[]
        print " u = %s   N = %d"%(`round(dx,3)`,N)
        print "  k  :  [x(u), %s(x(u))]  Error of splprep  Error of splrep "%(f(0,None))
        for k in range(1,6):
            tckp,u=splprep([x,v],s=s,per=per,k=k,nest=-1)
            tck=splrep(x,v,s=s,per=per,k=k)
            uv=splev(dx,tckp)
            print "  %d  :  %s    %.1e           %.1e"%\
                  (k,`map(lambda x:round(x,3),uv)`,
                   abs(uv[1]-f(uv[0])),
                   abs(splev(uv[0],tck)-f(uv[0])))
        print "Derivatives of parametric cubic spline at u (first function):"
        k=3
        tckp,u=splprep([x,v],s=s,per=per,k=k,nest=-1)
        for d in range(1,k+1):
            uv=splev(dx,tckp,d)
            put(" %s "%(`uv[0]`))
        print
    def makepairs(x,y):
        x,y=map(myasarray,[x,y])
        xy=array(map(lambda x,y:map(None,len(y)*[x],y),x,len(x)*[y]))
        sh=xy.shape
        xy.shape=sh[0]*sh[1],sh[2]
        return transpose(xy)
    def test5(f=f2,kx=3,ky=3,xb=0,xe=2*pi,yb=0,ye=2*pi,Nx=20,Ny=20,s=0):
        x=xb+(xe-xb)*arange(Nx+1,dtype=float)/float(Nx)
        y=yb+(ye-yb)*arange(Ny+1,dtype=float)/float(Ny)
        xy=makepairs(x,y)
        tck=bisplrep(xy[0],xy[1],f(xy[0],xy[1]),s=s,kx=kx,ky=ky)
        tt=[tck[0][kx:-kx],tck[1][ky:-ky]]
        t2=makepairs(tt[0],tt[1])
        v1=bisplev(tt[0],tt[1],tck)
        v2=f2(t2[0],t2[1])
        v2.shape=len(tt[0]),len(tt[1])
        print norm2(ravel(v1-v2))
    if 1 in runtest:
        print """\
******************************************
\tTests of splrep and splev
******************************************"""
        test1(s=1e-6)
        test1()
        test1(at=1)
        test1(per=1)
        test1(per=1,at=1)
        test1(b=1.5*pi)
        test1(b=1.5*pi,xe=2*pi,per=1,s=1e-1)
    if 2 in runtest:
        print """\
******************************************
\tTests of splint and spalde
******************************************"""
        test2()
        test2(per=1)
        test2(ia=0.2*pi,ib=pi)
        test2(ia=0.2*pi,ib=pi,N=50)
    if 3 in runtest:
        print """\
******************************************
\tTests of sproot
******************************************"""
        test3(a=0,b=15)
        print "Note that if k is not 3, some roots are missed or incorrect"
    if 4 in runtest:
        print """\
******************************************
\tTests of splprep, splrep, and splev
******************************************"""
        test4()
        test4(N=50)
    if 5 in runtest:
        print """\
******************************************
\tTests of bisplrep, bisplev
******************************************"""
        test5()