1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
from numpy.testing import *
from numpy import mgrid, pi, sin, ogrid
import numpy as np
set_package_path()
from interpolate import interp1d, interp2d
restore_path()
class test_interp2d(NumpyTestCase):
def test_interp2d(self):
y, x = mgrid[0:pi:20j, 0:pi:21j]
z = sin(x+y)
I = interp2d(x, y, z)
assert_almost_equal(I(1.0, 1.0), sin(2.0), decimal=2)
v,u = ogrid[0:pi:24j, 0:pi:25j]
assert_almost_equal(I(u.ravel(), v.ravel()), sin(v+u), decimal=2)
class test_interp1d(NumpyTestCase):
def setUp(self):
self.x10 = np.arange(10.)
self.y10 = np.arange(10.)
self.x25 = self.x10.reshape((2,5))
self.x2 = np.arange(2.)
self.y2 = np.arange(2.)
self.x1 = np.array([0.])
self.y1 = np.array([0.])
self.y210 = np.arange(20.).reshape((2, 10))
self.y102 = np.arange(20.).reshape((10, 2))
self.fill_value = -100.0
def test_validation(self):
""" Make sure that appropriate exceptions are raised when invalid values
are given to the constructor.
"""
# These should all work.
interp1d(self.x10, self.y10, kind='linear')
interp1d(self.x10, self.y10, kind='cubic')
interp1d(self.x10, self.y10, kind='slinear')
interp1d(self.x10, self.y10, kind='quadratic')
interp1d(self.x10, self.y10, kind='zero')
interp1d(self.x10, self.y10, kind=0)
interp1d(self.x10, self.y10, kind=1)
interp1d(self.x10, self.y10, kind=2)
interp1d(self.x10, self.y10, kind=3)
# x array must be 1D.
self.assertRaises(ValueError, interp1d, self.x25, self.y10)
# y array cannot be a scalar.
self.assertRaises(ValueError, interp1d, self.x10, np.array(0))
# Check for x and y arrays having the same length.
self.assertRaises(ValueError, interp1d, self.x10, self.y2)
self.assertRaises(ValueError, interp1d, self.x2, self.y10)
self.assertRaises(ValueError, interp1d, self.x10, self.y102)
interp1d(self.x10, self.y210)
interp1d(self.x10, self.y102, axis=0)
# Check for x and y having at least 1 element.
self.assertRaises(ValueError, interp1d, self.x1, self.y10)
self.assertRaises(ValueError, interp1d, self.x10, self.y1)
self.assertRaises(ValueError, interp1d, self.x1, self.y1)
def test_init(self):
""" Check that the attributes are initialized appropriately by the
constructor.
"""
self.assert_(interp1d(self.x10, self.y10).copy)
self.assert_(not interp1d(self.x10, self.y10, copy=False).copy)
self.assert_(interp1d(self.x10, self.y10).bounds_error)
self.assert_(not interp1d(self.x10, self.y10, bounds_error=False).bounds_error)
self.assert_(np.isnan(interp1d(self.x10, self.y10).fill_value))
self.assertEqual(
interp1d(self.x10, self.y10, fill_value=3.0).fill_value,
3.0,
)
self.assertEqual(
interp1d(self.x10, self.y10).axis,
0,
)
self.assertEqual(
interp1d(self.x10, self.y210).axis,
1,
)
self.assertEqual(
interp1d(self.x10, self.y102, axis=0).axis,
0,
)
assert_array_equal(
interp1d(self.x10, self.y10).x,
self.x10,
)
assert_array_equal(
interp1d(self.x10, self.y10).y,
self.y10,
)
assert_array_equal(
interp1d(self.x10, self.y210).y,
self.y210,
)
def test_linear(self):
""" Check the actual implementation of linear interpolation.
"""
interp10 = interp1d(self.x10, self.y10)
assert_array_almost_equal(
interp10(self.x10),
self.y10,
)
assert_array_almost_equal(
interp10(1.2),
np.array([1.2]),
)
assert_array_almost_equal(
interp10([2.4, 5.6, 6.0]),
np.array([2.4, 5.6, 6.0]),
)
def test_bounds(self):
""" Test that our handling of out-of-bounds input is correct.
"""
extrap10 = interp1d(self.x10, self.y10, fill_value=self.fill_value,
bounds_error=False)
assert_array_equal(
extrap10(11.2),
np.array([self.fill_value]),
)
assert_array_equal(
extrap10(-3.4),
np.array([self.fill_value]),
)
assert_array_equal(
extrap10._check_bounds(np.array([-1.0, 0.0, 5.0, 9.0, 11.0])),
np.array([True, False, False, False, True]),
)
raises_bounds_error = interp1d(self.x10, self.y10, bounds_error=True)
self.assertRaises(ValueError, raises_bounds_error, -1.0)
self.assertRaises(ValueError, raises_bounds_error, 11.0)
raises_bounds_error([0.0, 5.0, 9.0])
def test_nd(self):
""" Check the behavior when the inputs and outputs are multidimensional.
"""
# Multidimensional input.
interp10 = interp1d(self.x10, self.y10)
assert_array_almost_equal(
interp10(np.array([[3.4, 5.6], [2.4, 7.8]])),
np.array([[3.4, 5.6], [2.4, 7.8]]),
)
# Multidimensional outputs.
interp210 = interp1d(self.x10, self.y210)
assert_array_almost_equal(
interp210(1.5),
np.array([[1.5], [11.5]]),
)
assert_array_almost_equal(
interp210(np.array([1.5, 2.4])),
np.array([[1.5, 2.4],
[11.5, 12.4]]),
)
interp102 = interp1d(self.x10, self.y102, axis=0)
assert_array_almost_equal(
interp102(1.5),
np.array([[3.0, 4.0]]),
)
assert_array_almost_equal(
interp102(np.array([1.5, 2.4])),
np.array([[3.0, 4.0],
[4.8, 5.8]]),
)
# Both at the same time!
x_new = np.array([[3.4, 5.6], [2.4, 7.8]])
assert_array_almost_equal(
interp210(x_new),
np.array([[[3.4, 5.6], [2.4, 7.8]],
[[13.4, 15.6], [12.4, 17.8]]]),
)
assert_array_almost_equal(
interp102(x_new),
np.array([[[6.8, 7.8], [11.2, 12.2]],
[[4.8, 5.8], [15.6, 16.6]]]),
)
if __name__ == "__main__":
NumpyTest().run()
|