1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
"""NetCDF file reader.
This is adapted from Roberto De Almeida's Pupynere PUre PYthon NEtcdf REader.
classes changed to underscore_separated instead of CamelCase
TODO:
Add write capability.
"""
#__author__ = "Roberto De Almeida <rob@pydap.org>"
__all__ = ['netcdf_file', 'netcdf_variable']
import struct
import itertools
import mmap
from numpy import ndarray, zeros, array
ABSENT = '\x00' * 8
ZERO = '\x00' * 4
NC_BYTE = '\x00\x00\x00\x01'
NC_CHAR = '\x00\x00\x00\x02'
NC_SHORT = '\x00\x00\x00\x03'
NC_INT = '\x00\x00\x00\x04'
NC_FLOAT = '\x00\x00\x00\x05'
NC_DOUBLE = '\x00\x00\x00\x06'
NC_DIMENSION = '\x00\x00\x00\n'
NC_VARIABLE = '\x00\x00\x00\x0b'
NC_ATTRIBUTE = '\x00\x00\x00\x0c'
class netcdf_file(object):
"""A NetCDF file parser."""
def __init__(self, file, mode):
mode += 'b'
self._buffer = open(file, mode)
if mode in ['rb', 'r+b']:
self._parse()
elif mode == 'ab':
raise NotImplementedError
def flush(self):
pass
def sync(self):
pass
def close(self):
pass
def create_dimension(self, name, length):
pass
def create_variable(self, name, type, dimensions):
pass
def read(self, size=-1):
"""Alias for reading the file buffer."""
return self._buffer.read(size)
def _parse(self):
"""Initial parsing of the header."""
# Check magic bytes.
assert self.read(3) == 'CDF'
# Read version byte.
byte = self.read(1)
self.version_byte = struct.unpack('>b', byte)[0]
# Read header info.
self._numrecs()
self._dim_array()
self._gatt_array()
self._var_array()
def _numrecs(self):
"""Read number of records."""
self._nrecs = self._unpack_int()
def _dim_array(self):
"""Read a dict with dimensions names and sizes."""
assert self.read(4) in [ZERO, NC_DIMENSION]
count = self._unpack_int()
self.dimensions = {}
self._dims = []
for dim in range(count):
name = self._read_string()
length = self._unpack_int()
if length == 0: length = None # record dimension
self.dimensions[name] = length
self._dims.append(name) # preserve dim order
def _gatt_array(self):
"""Read global attributes."""
self.attributes = self._att_array()
# Update __dict__ for compatibility with S.IO.N
self.__dict__.update(self.attributes)
def _att_array(self):
"""Read a dict with attributes."""
assert self.read(4) in [ZERO, NC_ATTRIBUTE]
count = self._unpack_int()
# Read attributes.
attributes = {}
for attribute in range(count):
name = self._read_string()
nc_type = self._unpack_int()
n = self._unpack_int()
# Read value for attributes.
attributes[name] = self._read_values(n, nc_type)
return attributes
def _var_array(self):
"""Read all variables."""
assert self.read(4) in [ZERO, NC_VARIABLE]
# Read size of each record, in bytes.
self._read_recsize()
# Read variables.
self.variables = {}
count = self._unpack_int()
for variable in range(count):
name = self._read_string()
self.variables[name] = self._read_var()
def _read_recsize(self):
"""Read all variables and compute record bytes."""
pos = self._buffer.tell()
recsize = 0
count = self._unpack_int()
for variable in range(count):
name = self._read_string()
n = self._unpack_int()
isrec = False
for i in range(n):
dimid = self._unpack_int()
name = self._dims[dimid]
dim = self.dimensions[name]
if dim is None and i == 0:
isrec = True
attributes = self._att_array()
nc_type = self._unpack_int()
vsize = self._unpack_int()
begin = [self._unpack_int, self._unpack_int64][self.version_byte-1]()
if isrec: recsize += vsize
self._recsize = recsize
self._buffer.seek(pos)
def _read_var(self):
dimensions = []
shape = []
n = self._unpack_int()
isrec = False
for i in range(n):
dimid = self._unpack_int()
name = self._dims[dimid]
dimensions.append(name)
dim = self.dimensions[name]
if dim is None and i == 0:
dim = self._nrecs
isrec = True
shape.append(dim)
dimensions = tuple(dimensions)
shape = tuple(shape)
attributes = self._att_array()
nc_type = self._unpack_int()
vsize = self._unpack_int()
# Read offset.
begin = [self._unpack_int, self._unpack_int64][self.version_byte-1]()
return netcdf_variable(self._buffer.fileno(), nc_type, vsize, begin, shape, dimensions, attributes, isrec, self._recsize)
def _read_values(self, n, nc_type):
bytes = [1, 1, 2, 4, 4, 8]
typecodes = ['b', 'c', 'h', 'i', 'f', 'd']
count = n * bytes[nc_type-1]
values = self.read(count)
padding = self.read((4 - (count % 4)) % 4)
typecode = typecodes[nc_type-1]
if nc_type != 2: # not char
values = struct.unpack('>%s' % (typecode * n), values)
values = array(values, dtype=typecode)
else:
# Remove EOL terminator.
if values.endswith('\x00'): values = values[:-1]
return values
def _unpack_int(self):
return struct.unpack('>i', self.read(4))[0]
_unpack_int32 = _unpack_int
def _unpack_int64(self):
return struct.unpack('>q', self.read(8))[0]
def _read_string(self):
count = struct.unpack('>i', self.read(4))[0]
s = self.read(count)
# Remove EOL terminator.
if s.endswith('\x00'): s = s[:-1]
padding = self.read((4 - (count % 4)) % 4)
return s
def close(self):
self._buffer.close()
class netcdf_variable(object):
def __init__(self, fileno, nc_type, vsize, begin, shape, dimensions, attributes, isrec=False, recsize=0):
self._nc_type = nc_type
self._vsize = vsize
self._begin = begin
self.shape = shape
self.dimensions = dimensions
self.attributes = attributes # for ``dap.plugins.netcdf``
self.__dict__.update(attributes)
self._is_record = isrec
# Number of bytes and type.
self._bytes = [1, 1, 2, 4, 4, 8][self._nc_type-1]
type_ = ['i', 'S', 'i', 'i', 'f', 'f'][self._nc_type-1]
dtype = '>%s%d' % (type_, self._bytes)
bytes = self._begin + self._vsize
if isrec:
# Record variables are not stored contiguosly on disk, so we
# need to create a separate array for each record.
#
# TEO: This will copy data from the newly-created array
# into the __array_data__ region, thus removing any benefit of using
# a memory-mapped file. You might as well just read the data
# in directly.
self.__array_data__ = zeros(shape, dtype)
bytes += (shape[0] - 1) * recsize
for n in range(shape[0]):
offset = self._begin + (n * recsize)
mm = mmap.mmap(fileno, bytes, access=mmap.ACCESS_READ)
self.__array_data__[n] = ndarray.__new__(ndarray, shape[1:], dtype=dtype, buffer=mm, offset=offset, order=0)
else:
# Create buffer and data.
mm = mmap.mmap(fileno, bytes, access=mmap.ACCESS_READ)
self.__array_data__ = ndarray.__new__(ndarray, shape, dtype=dtype, buffer=mm, offset=self._begin, order=0)
# N-D array interface
self.__array_interface__ = {'shape' : shape,
'typestr': dtype,
'data' : self.__array_data__,
'version': 3,
}
def __getitem__(self, index):
return self.__array_data__.__getitem__(index)
def getValue(self):
"""For scalars."""
return self.__array_data__.item()
def assignValue(self, value):
"""For scalars."""
self.__array_data__.itemset(value)
def typecode(self):
return ['b', 'c', 'h', 'i', 'f', 'd'][self._nc_type-1]
def _test():
import doctest
doctest.testmod()
|