1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
## Automatically adapted for scipy Oct 18, 2005 by
#
# Author: Travis Oliphant, March 2002
#
__all__ = ['expm','expm2','expm3','cosm','sinm','tanm','coshm','sinhm',
'tanhm','logm','funm','signm','sqrtm']
from numpy import asarray, Inf, dot, floor, eye, diag, exp, \
product, logical_not, ravel, transpose, conjugate, \
cast, log, ogrid, isfinite, imag, real, absolute, amax, sign, \
isfinite, sqrt, identity, single
from numpy import matrix as mat
import numpy as sb
from basic import solve, inv, norm, triu, all_mat
from decomp import eig, schur, rsf2csf, orth, svd
eps = sb.finfo(float).eps
feps = sb.finfo(single).eps
def expm(A,q=7):
"""Compute the matrix exponential using Pade approximation of order q.
"""
A = asarray(A)
ss = True
if A.dtype.char in ['f', 'F']:
pass ## A.savespace(1)
else:
pass ## A.savespace(0)
# Scale A so that norm is < 1/2
nA = norm(A,Inf)
if nA==0:
return identity(len(A), A.dtype.char)
from numpy import log2
val = log2(nA)
e = int(floor(val))
j = max(0,e+1)
A = A / 2.0**j
# Pade Approximation for exp(A)
X = A
c = 1.0/2
N = eye(*A.shape) + c*A
D = eye(*A.shape) - c*A
for k in range(2,q+1):
c = c * (q-k+1) / (k*(2*q-k+1))
X = dot(A,X)
cX = c*X
N = N + cX
if not k % 2:
D = D + cX;
else:
D = D - cX;
F = solve(D,N)
for k in range(1,j+1):
F = dot(F,F)
pass ## A.savespace(ss)
return F
def expm2(A):
"""Compute the matrix exponential using eigenvalue decomposition.
"""
A = asarray(A)
t = A.dtype.char
if t not in ['f','F','d','D']:
A = A.astype('d')
t = 'd'
s,vr = eig(A)
vri = inv(vr)
return dot(dot(vr,diag(exp(s))),vri).astype(t)
def expm3(A,q=20):
"""Compute the matrix exponential using a Taylor series.of order q.
"""
A = asarray(A)
t = A.dtype.char
if t not in ['f','F','d','D']:
A = A.astype('d')
t = 'd'
A = mat(A)
eA = eye(*A.shape,**{'dtype':t})
trm = mat(eA, copy=True)
castfunc = cast[t]
for k in range(1,q):
trm *= A / castfunc(k)
eA += trm
return eA
_array_precision = {'i': 1, 'l': 1, 'f': 0, 'd': 1, 'F': 0, 'D': 1}
def toreal(arr,tol=None):
"""Return as real array if imaginary part is small.
"""
if tol is None:
tol = {0:feps*1e3, 1:eps*1e6}[_array_precision[arr.dtype.char]]
if (arr.dtype.char in ['F', 'D','G']) and \
sb.allclose(arr.imag, 0.0, atol=tol):
arr = arr.real
return arr
def cosm(A):
"""matrix cosine.
"""
A = asarray(A)
if A.dtype.char not in ['F','D','G']:
return expm(1j*A).real
else:
return 0.5*(expm(1j*A) + expm(-1j*A))
def sinm(A):
"""matrix sine.
"""
A = asarray(A)
if A.dtype.char not in ['F','D','G']:
return expm(1j*A).imag
else:
return -0.5j*(expm(1j*A) - expm(-1j*A))
def tanm(A):
"""matrix tangent.
"""
A = asarray(A)
if A.dtype.char not in ['F','D','G']:
return toreal(solve(cosm(A), sinm(A)))
else:
return solve(cosm(A), sinm(A))
def coshm(A):
"""matrix hyperbolic cosine.
"""
A = asarray(A)
if A.dtype.char not in ['F','D','G']:
return toreal(0.5*(expm(A) + expm(-A)))
else:
return 0.5*(expm(A) + expm(-A))
def sinhm(A):
"""matrix hyperbolic sine.
"""
A = asarray(A)
if A.dtype.char not in ['F','D']:
return toreal(0.5*(expm(A) - expm(-A)))
else:
return 0.5*(expm(A) - expm(-A))
def tanhm(A):
"""matrix hyperbolic tangent.
"""
A = asarray(A)
if A.dtype.char not in ['F','D']:
return toreal(solve(coshm(A), sinhm(A)))
else:
return solve(coshm(A), sinhm(A))
def funm(A,func,disp=1):
"""matrix function for arbitrary callable object func.
"""
# func should take a vector of arguments (see vectorize if
# it needs wrapping.
# Perform Shur decomposition (lapack ?gees)
A = asarray(A)
if len(A.shape)!=2:
raise ValueError, "Non-matrix input to matrix function."
if A.dtype.char in ['F', 'D', 'G']:
cmplx_type = 1
else:
cmplx_type = 0
T, Z = schur(A)
T, Z = rsf2csf(T,Z)
n,n = T.shape
F = diag(func(diag(T))) # apply function to diagonal elements
F = F.astype(T.dtype.char) # e.g. when F is real but T is complex
minden = abs(T[0,0])
# implement Algorithm 11.1.1 from Golub and Van Loan
# "matrix Computations."
for p in range(1,n):
for i in range(1,n-p+1):
j = i + p
s = T[i-1,j-1] * (F[j-1,j-1] - F[i-1,i-1])
ksl = slice(i,j-1)
val = dot(T[i-1,ksl],F[ksl,j-1]) - dot(F[i-1,ksl],T[ksl,j-1])
s = s + val
den = T[j-1,j-1] - T[i-1,i-1]
if den != 0.0:
s = s / den
F[i-1,j-1] = s
minden = min(minden,abs(den))
F = dot(dot(Z, F),transpose(conjugate(Z)))
if not cmplx_type:
F = toreal(F)
tol = {0:feps, 1:eps}[_array_precision[F.dtype.char]]
if minden == 0.0:
minden = tol
err = min(1, max(tol,(tol/minden)*norm(triu(T,1),1)))
if product(ravel(logical_not(isfinite(F))),axis=0):
err = Inf
if disp:
if err > 1000*tol:
print "Result may be inaccurate, approximate err =", err
return F
else:
return F, err
def logm(A,disp=1):
"""Matrix logarithm, inverse of expm."""
# Compute using general funm but then use better error estimator and
# make one step in improving estimate using a rotation matrix.
A = mat(asarray(A))
F, errest = funm(A,log,disp=0)
errtol = 1000*eps
# Only iterate if estimate of error is too large.
if errest >= errtol:
# Use better approximation of error
errest = norm(expm(F)-A,1) / norm(A,1)
if not isfinite(errest) or errest >= errtol:
N,N = A.shape
X,Y = ogrid[1:N+1,1:N+1]
R = mat(orth(eye(N,dtype='d')+X+Y))
F, dontcare = funm(R*A*R.H,log,disp=0)
F = R.H*F*R
if (norm(imag(F),1)<=1000*errtol*norm(F,1)):
F = mat(real(F))
E = mat(expm(F))
temp = mat(solve(E.T,(E-A).T))
F = F - temp.T
errest = norm(expm(F)-A,1) / norm(A,1)
if disp:
if not isfinite(errest) or errest >= errtol:
print "Result may be inaccurate, approximate err =", errest
return F
else:
return F, errest
def signm(a,disp=1):
"""matrix sign"""
def rounded_sign(x):
rx = real(x)
if rx.dtype.char=='f':
c = 1e3*feps*amax(x)
else:
c = 1e3*eps*amax(x)
return sign( (absolute(rx) > c) * rx )
result,errest = funm(a, rounded_sign, disp=0)
errtol = {0:1e3*feps, 1:1e3*eps}[_array_precision[result.dtype.char]]
if errest < errtol:
return result
# Handle signm of defective matrices:
# See "E.D.Denman and J.Leyva-Ramos, Appl.Math.Comp.,
# 8:237-250,1981" for how to improve the following (currently a
# rather naive) iteration process:
a = asarray(a)
#a = result # sometimes iteration converges faster but where??
# Shifting to avoid zero eigenvalues. How to ensure that shifting does
# not change the spectrum too much?
vals = svd(a,compute_uv=0)
max_sv = sb.amax(vals)
#min_nonzero_sv = vals[(vals>max_sv*errtol).tolist().count(1)-1]
#c = 0.5/min_nonzero_sv
c = 0.5/max_sv
S0 = a + c*sb.identity(a.shape[0])
prev_errest = errest
for i in range(100):
iS0 = inv(S0)
S0 = 0.5*(S0 + iS0)
Pp=0.5*(dot(S0,S0)+S0)
errest = norm(dot(Pp,Pp)-Pp,1)
if errest < errtol or prev_errest==errest:
break
prev_errest = errest
if disp:
if not isfinite(errest) or errest >= errtol:
print "Result may be inaccurate, approximate err =", errest
return S0
else:
return S0, errest
def sqrtm(A,disp=1):
"""Matrix square root
If disp is non-zero display warning if singular matrix.
If disp is zero then return residual ||A-X*X||_F / ||A||_F
Uses algorithm by Nicholas J. Higham
"""
A = asarray(A)
if len(A.shape)!=2:
raise ValueError, "Non-matrix input to matrix function."
T, Z = schur(A)
T, Z = rsf2csf(T,Z)
n,n = T.shape
R = sb.zeros((n,n),T.dtype.char)
for j in range(n):
R[j,j] = sqrt(T[j,j])
for i in range(j-1,-1,-1):
s = 0
for k in range(i+1,j):
s = s + R[i,k]*R[k,j]
R[i,j] = (T[i,j] - s)/(R[i,i] + R[j,j])
R, Z = all_mat(R,Z)
X = (Z * R * Z.H)
if disp:
nzeig = sb.any(sb.diag(T)==0)
if nzeig:
print "Matrix is singular and may not have a square root."
return X.A
else:
arg2 = norm(X*X - A,'fro')**2 / norm(A,'fro')
return X.A, arg2
|