File: matfuncs.py

package info (click to toggle)
python-scipy 0.6.0-12
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 32,016 kB
  • ctags: 46,675
  • sloc: cpp: 124,854; ansic: 110,614; python: 108,664; fortran: 76,260; objc: 424; makefile: 384; sh: 10
file content (322 lines) | stat: -rw-r--r-- 9,134 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
## Automatically adapted for scipy Oct 18, 2005 by

#
# Author: Travis Oliphant, March 2002
#

__all__ = ['expm','expm2','expm3','cosm','sinm','tanm','coshm','sinhm',
           'tanhm','logm','funm','signm','sqrtm']

from numpy import asarray, Inf, dot, floor, eye, diag, exp, \
     product, logical_not, ravel, transpose, conjugate, \
     cast, log, ogrid, isfinite, imag, real, absolute, amax, sign, \
     isfinite, sqrt, identity, single
from numpy import matrix as mat
import numpy as sb
from basic import solve, inv, norm, triu, all_mat
from decomp import eig, schur, rsf2csf, orth, svd

eps = sb.finfo(float).eps
feps = sb.finfo(single).eps

def expm(A,q=7):
    """Compute the matrix exponential using Pade approximation of order q.
    """
    A = asarray(A)
    ss = True
    if A.dtype.char in ['f', 'F']:
        pass  ## A.savespace(1)
    else:
        pass  ## A.savespace(0)

    # Scale A so that norm is < 1/2
    nA = norm(A,Inf)
    if nA==0:
        return identity(len(A), A.dtype.char)
    from numpy import log2
    val = log2(nA)
    e = int(floor(val))
    j = max(0,e+1)
    A = A / 2.0**j

    # Pade Approximation for exp(A)
    X = A
    c = 1.0/2
    N = eye(*A.shape) + c*A
    D = eye(*A.shape) - c*A
    for k in range(2,q+1):
        c = c * (q-k+1) / (k*(2*q-k+1))
        X = dot(A,X)
        cX = c*X
        N = N + cX
        if not k % 2:
            D = D + cX;
        else:
            D = D - cX;
    F = solve(D,N)
    for k in range(1,j+1):
        F = dot(F,F)
    pass  ## A.savespace(ss)
    return F

def expm2(A):
    """Compute the matrix exponential using eigenvalue decomposition.
    """
    A = asarray(A)
    t = A.dtype.char
    if t not in ['f','F','d','D']:
        A = A.astype('d')
        t = 'd'
    s,vr = eig(A)
    vri = inv(vr)
    return dot(dot(vr,diag(exp(s))),vri).astype(t)

def expm3(A,q=20):
    """Compute the matrix exponential using a Taylor series.of order q.
    """
    A = asarray(A)
    t = A.dtype.char
    if t not in ['f','F','d','D']:
        A = A.astype('d')
        t = 'd'
    A = mat(A)
    eA = eye(*A.shape,**{'dtype':t})
    trm = mat(eA, copy=True)
    castfunc = cast[t]
    for k in range(1,q):
        trm *= A / castfunc(k)
        eA += trm
    return eA

_array_precision = {'i': 1, 'l': 1, 'f': 0, 'd': 1, 'F': 0, 'D': 1}
def toreal(arr,tol=None):
    """Return as real array if imaginary part is small.
    """
    if tol is None:
        tol = {0:feps*1e3, 1:eps*1e6}[_array_precision[arr.dtype.char]]
    if (arr.dtype.char in ['F', 'D','G']) and \
       sb.allclose(arr.imag, 0.0, atol=tol):
        arr = arr.real
    return arr

def cosm(A):
    """matrix cosine.
    """
    A = asarray(A)
    if A.dtype.char not in ['F','D','G']:
        return expm(1j*A).real
    else:
        return 0.5*(expm(1j*A) + expm(-1j*A))


def sinm(A):
    """matrix sine.
    """
    A = asarray(A)
    if A.dtype.char not in ['F','D','G']:
        return expm(1j*A).imag
    else:
        return -0.5j*(expm(1j*A) - expm(-1j*A))

def tanm(A):
    """matrix tangent.
    """
    A = asarray(A)
    if A.dtype.char not in ['F','D','G']:
        return toreal(solve(cosm(A), sinm(A)))
    else:
        return solve(cosm(A), sinm(A))

def coshm(A):
    """matrix hyperbolic cosine.
    """
    A = asarray(A)
    if A.dtype.char not in ['F','D','G']:
        return toreal(0.5*(expm(A) + expm(-A)))
    else:
        return 0.5*(expm(A) + expm(-A))

def sinhm(A):
    """matrix hyperbolic sine.
    """
    A = asarray(A)
    if A.dtype.char not in ['F','D']:
        return toreal(0.5*(expm(A) - expm(-A)))
    else:
        return 0.5*(expm(A) - expm(-A))

def tanhm(A):
    """matrix hyperbolic tangent.
    """
    A = asarray(A)
    if A.dtype.char not in ['F','D']:
        return toreal(solve(coshm(A), sinhm(A)))
    else:
        return solve(coshm(A), sinhm(A))

def funm(A,func,disp=1):
    """matrix function for arbitrary callable object func.
    """
    # func should take a vector of arguments (see vectorize if
    #  it needs wrapping.

    # Perform Shur decomposition (lapack ?gees)
    A = asarray(A)
    if len(A.shape)!=2:
        raise ValueError, "Non-matrix input to matrix function."
    if A.dtype.char in ['F', 'D', 'G']:
        cmplx_type = 1
    else:
        cmplx_type = 0
    T, Z = schur(A)
    T, Z = rsf2csf(T,Z)
    n,n = T.shape
    F = diag(func(diag(T)))  # apply function to diagonal elements
    F = F.astype(T.dtype.char) # e.g. when F is real but T is complex

    minden = abs(T[0,0])

    # implement Algorithm 11.1.1 from Golub and Van Loan
    #                 "matrix Computations."
    for p in range(1,n):
        for i in range(1,n-p+1):
            j = i + p
            s = T[i-1,j-1] * (F[j-1,j-1] - F[i-1,i-1])
            ksl = slice(i,j-1)
            val = dot(T[i-1,ksl],F[ksl,j-1]) - dot(F[i-1,ksl],T[ksl,j-1])
            s = s + val
            den = T[j-1,j-1] - T[i-1,i-1]
            if den != 0.0:
                s = s / den
            F[i-1,j-1] = s
            minden = min(minden,abs(den))

    F = dot(dot(Z, F),transpose(conjugate(Z)))
    if not cmplx_type:
        F = toreal(F)

    tol = {0:feps, 1:eps}[_array_precision[F.dtype.char]]
    if minden == 0.0:
        minden = tol
    err = min(1, max(tol,(tol/minden)*norm(triu(T,1),1)))
    if product(ravel(logical_not(isfinite(F))),axis=0):
        err = Inf
    if disp:
        if err > 1000*tol:
            print "Result may be inaccurate, approximate err =", err
        return F
    else:
        return F, err

def logm(A,disp=1):
    """Matrix logarithm, inverse of expm."""
    # Compute using general funm but then use better error estimator and
    #   make one step in improving estimate using a rotation matrix.
    A = mat(asarray(A))
    F, errest = funm(A,log,disp=0)
    errtol = 1000*eps
    # Only iterate if estimate of error is too large.
    if errest >= errtol:
        # Use better approximation of error
        errest = norm(expm(F)-A,1) / norm(A,1)
        if not isfinite(errest) or errest >= errtol:
            N,N = A.shape
            X,Y = ogrid[1:N+1,1:N+1]
            R = mat(orth(eye(N,dtype='d')+X+Y))
            F, dontcare = funm(R*A*R.H,log,disp=0)
            F = R.H*F*R
            if (norm(imag(F),1)<=1000*errtol*norm(F,1)):
                F = mat(real(F))
            E = mat(expm(F))
            temp = mat(solve(E.T,(E-A).T))
            F = F - temp.T
            errest = norm(expm(F)-A,1) / norm(A,1)
    if disp:
        if not isfinite(errest) or errest >= errtol:
            print "Result may be inaccurate, approximate err =", errest
        return F
    else:
        return F, errest

def signm(a,disp=1):
    """matrix sign"""
    def rounded_sign(x):
        rx = real(x)
        if rx.dtype.char=='f':
            c =  1e3*feps*amax(x)
        else:
            c =  1e3*eps*amax(x)
        return sign( (absolute(rx) > c) * rx )
    result,errest = funm(a, rounded_sign, disp=0)
    errtol = {0:1e3*feps, 1:1e3*eps}[_array_precision[result.dtype.char]]
    if errest < errtol:
        return result

    # Handle signm of defective matrices:

    # See "E.D.Denman and J.Leyva-Ramos, Appl.Math.Comp.,
    # 8:237-250,1981" for how to improve the following (currently a
    # rather naive) iteration process:

    a = asarray(a)
    #a = result # sometimes iteration converges faster but where??

    # Shifting to avoid zero eigenvalues. How to ensure that shifting does
    # not change the spectrum too much?
    vals = svd(a,compute_uv=0)
    max_sv = sb.amax(vals)
    #min_nonzero_sv = vals[(vals>max_sv*errtol).tolist().count(1)-1]
    #c = 0.5/min_nonzero_sv
    c = 0.5/max_sv
    S0 = a + c*sb.identity(a.shape[0])
    prev_errest = errest
    for i in range(100):
        iS0 = inv(S0)
        S0 = 0.5*(S0 + iS0)
        Pp=0.5*(dot(S0,S0)+S0)
        errest = norm(dot(Pp,Pp)-Pp,1)
        if errest < errtol or prev_errest==errest:
            break
        prev_errest = errest
    if disp:
        if not isfinite(errest) or errest >= errtol:
            print "Result may be inaccurate, approximate err =", errest
        return S0
    else:
        return S0, errest

def sqrtm(A,disp=1):
    """Matrix square root

    If disp is non-zero display warning if singular matrix.
    If disp is zero then return residual ||A-X*X||_F / ||A||_F

    Uses algorithm by Nicholas J. Higham
    """
    A = asarray(A)
    if len(A.shape)!=2:
        raise ValueError, "Non-matrix input to matrix function."
    T, Z = schur(A)
    T, Z = rsf2csf(T,Z)
    n,n = T.shape

    R = sb.zeros((n,n),T.dtype.char)
    for j in range(n):
        R[j,j] = sqrt(T[j,j])
        for i in range(j-1,-1,-1):
            s = 0
            for k in range(i+1,j):
                s = s + R[i,k]*R[k,j]
            R[i,j] = (T[i,j] - s)/(R[i,i] + R[j,j])

    R, Z = all_mat(R,Z)
    X = (Z * R * Z.H)

    if disp:
        nzeig = sb.any(sb.diag(T)==0)
        if nzeig:
            print "Matrix is singular and may not have a square root."
        return X.A
    else:
        arg2 = norm(X*X - A,'fro')**2 / norm(A,'fro')
        return X.A, arg2