1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
#!/usr/bin/env python
#
""" Test functions for UMFPACK wrappers
"""
from numpy import transpose, array, arange
import random
from numpy.testing import *
set_package_path()
from scipy import linsolve, rand, matrix, diag, eye
from scipy.sparse import csc_matrix, dok_matrix, spdiags
import numpy as nm
import scipy.linsolve.umfpack as um
restore_path()
class test_solvers(NumpyTestCase):
"""Tests inverting a sparse linear system"""
def check_solve_complex_without_umfpack(self):
"""Solve: single precision complex"""
linsolve.use_solver( useUmfpack = False )
a = self.a.astype('F')
b = self.b
x = linsolve.spsolve(a, b)
#print x
#print "Error: ", a*x-b
assert_array_almost_equal(a*x, b)
def check_solve_without_umfpack(self):
"""Solve: single precision"""
linsolve.use_solver( useUmfpack = False )
a = self.a.astype('f')
b = self.b
x = linsolve.spsolve(a, b.astype('f'))
#print x
#print "Error: ", a*x-b
assert_array_almost_equal(a*x, b)
def check_solve_complex_umfpack(self):
"""Solve with UMFPACK: double precision complex"""
linsolve.use_solver( useUmfpack = True )
a = self.a.astype('D')
b = self.b
x = linsolve.spsolve(a, b)
#print x
#print "Error: ", a*x-b
assert_array_almost_equal(a*x, b)
def check_solve_umfpack(self):
"""Solve with UMFPACK: double precision"""
linsolve.use_solver( useUmfpack = True )
a = self.a.astype('d')
b = self.b
x = linsolve.spsolve(a, b)
#print x
#print "Error: ", a*x-b
assert_array_almost_equal(a*x, b)
def check_solve_sparse_rhs(self):
"""Solve with UMFPACK: double precision, sparse rhs"""
linsolve.use_solver( useUmfpack = True )
a = self.a.astype('d')
b = csc_matrix( self.b )
x = linsolve.spsolve(a, b)
#print x
#print "Error: ", a*x-b
assert_array_almost_equal(a*x, self.b)
def check_factorized_umfpack(self):
"""Prefactorize (with UMFPACK) matrix for solving with multiple rhs"""
linsolve.use_solver( useUmfpack = True )
a = self.a.astype('d')
solve = linsolve.factorized( a )
x1 = solve( self.b )
assert_array_almost_equal(a*x1, self.b)
x2 = solve( self.b2 )
assert_array_almost_equal(a*x2, self.b2)
def check_factorized_without_umfpack(self):
"""Prefactorize matrix for solving with multiple rhs"""
linsolve.use_solver( useUmfpack = False )
a = self.a.astype('d')
solve = linsolve.factorized( a )
x1 = solve( self.b )
assert_array_almost_equal(a*x1, self.b)
x2 = solve( self.b2 )
assert_array_almost_equal(a*x2, self.b2)
def setUp(self):
self.a = spdiags([[1, 2, 3, 4, 5], [6, 5, 8, 9, 10]], [0, 1], 5, 5)
#print "The sparse matrix (constructed from diagonals):"
#print self.a
self.b = array([1, 2, 3, 4, 5])
self.b2 = array([5, 4, 3, 2, 1])
class test_factorization(NumpyTestCase):
"""Tests factorizing a sparse linear system"""
def check_complex_lu(self):
"""Getting factors of complex matrix"""
umfpack = um.UmfpackContext("zi")
for A in self.complex_matrices:
umfpack.numeric(A)
(L,U,P,Q,R,do_recip) = umfpack.lu(A)
L = L.todense()
U = U.todense()
A = A.todense()
if not do_recip: R = 1.0/R
R = matrix(diag(R))
P = eye(A.shape[0])[P,:]
Q = eye(A.shape[1])[:,Q]
assert_array_almost_equal(P*R*A*Q,L*U)
def check_real_lu(self):
"""Getting factors of real matrix"""
umfpack = um.UmfpackContext("di")
for A in self.real_matrices:
umfpack.numeric(A)
(L,U,P,Q,R,do_recip) = umfpack.lu(A)
L = L.todense()
U = U.todense()
A = A.todense()
if not do_recip: R = 1.0/R
R = matrix(diag(R))
P = eye(A.shape[0])[P,:]
Q = eye(A.shape[1])[:,Q]
assert_array_almost_equal(P*R*A*Q,L*U)
def setUp(self):
random.seed(0) #make tests repeatable
self.real_matrices = []
self.real_matrices.append(spdiags([[1, 2, 3, 4, 5], [6, 5, 8, 9, 10]],
[0, 1], 5, 5))
self.real_matrices.append(spdiags([[1, 2, 3, 4, 5], [6, 5, 8, 9, 10]],
[0, 1], 4, 5))
self.real_matrices.append(spdiags([[1, 2, 3, 4, 5], [6, 5, 8, 9, 10]],
[0, 2], 5, 5))
self.real_matrices.append(csc_matrix(rand(3,3)))
self.real_matrices.append(csc_matrix(rand(5,4)))
self.real_matrices.append(csc_matrix(rand(4,5)))
self.complex_matrices = [x.astype(nm.complex128)
for x in self.real_matrices]
if __name__ == "__main__":
NumpyTest().run()
|