1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
|
# Copyright (C) 2003-2005 Peter J. Verveer
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
#
# 3. The name of the author may not be used to endorse or promote
# products derived from this software without specific prior
# written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import math
import numpy
import _ni_support
import _nd_image
def correlate1d(input, weights, axis = -1, output = None, mode = "reflect",
cval = 0.0, origin = 0):
"""Calculate a one-dimensional correlation along the given axis.
The lines of the array along the given axis are correlated with the
given weights. The weights parameter must be a one-dimensional sequence
of numbers."""
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError, 'Complex type not supported'
output, return_value = _ni_support._get_output(output, input)
weights = numpy.asarray(weights, dtype = numpy.float64)
if weights.ndim != 1 or weights.shape[0] < 1:
raise RuntimeError, 'no filter weights given'
if not weights.flags.contiguous:
weights = weights.copy()
axis = _ni_support._check_axis(axis, input.ndim)
if ((len(weights) // 2 + origin < 0) or
(len(weights) // 2 + origin > len(weights))):
raise ValueError, 'invalid origin'
mode = _ni_support._extend_mode_to_code(mode)
_nd_image.correlate1d(input, weights, axis, output, mode, cval,
origin)
return return_value
def convolve1d(input, weights, axis = -1, output = None, mode = "reflect",
cval = 0.0, origin = 0):
"""Calculate a one-dimensional convolution along the given axis.
The lines of the array along the given axis are convolved with the
given weights. The weights parameter must be a one-dimensional sequence
of numbers."""
weights = weights[::-1]
origin = -origin
if not len(weights) & 1:
origin -= 1
return correlate1d(input, weights, axis, output, mode, cval, origin)
def gaussian_filter1d(input, sigma, axis = -1, order = 0, output = None,
mode = "reflect", cval = 0.0):
"""One-dimensional Gaussian filter.
The standard-deviation of the Gaussian filter is given by
sigma. An order of 0 corresponds to convolution with a Gaussian
kernel. An order of 1, 2, or 3 corresponds to convolution with the
first, second or third derivatives of a Gaussian. Higher order
derivatives are not implemented.
"""
sd = float(sigma)
# make the length of the filter equal to 4 times the standard
# deviations:
lw = int(4.0 * sd + 0.5)
weights = [0.0] * (2 * lw + 1)
weights[lw] = 1.0
sum = 1.0
sd = sd * sd
# calculate the kernel:
for ii in range(1, lw + 1):
tmp = math.exp(-0.5 * float(ii * ii) / sd)
weights[lw + ii] = tmp
weights[lw - ii] = tmp
sum += 2.0 * tmp
for ii in range(2 * lw + 1):
weights[ii] /= sum
# implement first, second and third order derivatives:
if order == 1 : # first derivative
weights[lw] = 0.0
for ii in range(1, lw + 1):
x = float(ii)
tmp = -x / sd * weights[lw + ii]
weights[lw + ii] = -tmp
weights[lw - ii] = tmp
elif order == 2: # second derivative
weights[lw] *= -1.0 / sd
for ii in range(1, lw + 1):
x = float(ii)
tmp = (x * x / sd - 1.0) * weights[lw + ii] / sd
weights[lw + ii] = tmp
weights[lw - ii] = tmp
elif order == 3: # third derivative
weights[lw] = 0.0
sd2 = sd * sd
for ii in range(1, lw + 1):
x = float(ii)
tmp = (3.0 - x * x / sd) * x * weights[lw + ii] / sd / sd
weights[lw + ii] = -tmp
weights[lw - ii] = tmp
return correlate1d(input, weights, axis, output, mode, cval, 0)
def gaussian_filter(input, sigma, order = 0, output = None,
mode = "reflect", cval = 0.0):
"""Multi-dimensional Gaussian filter.
The standard-deviations of the Gaussian filter are given for each
axis as a sequence, or as a single number, in which case it is
equal for all axes. The order of the filter along each axis is
given as a sequence of integers, or as a single number. An order
of 0 corresponds to convolution with a Gaussian kernel. An order
of 1, 2, or 3 corresponds to convolution with the first, second or
third derivatives of a Gaussian. Higher order derivatives are not
implemented.'
Note: The multi-dimensional filter is implemented as a sequence of
one-dimensional convolution filters. The intermediate arrays are
stored in the same data type as the output. Therefore, for output
types with a limited precision, the results may be imprecise
because intermediate results may be stored with insufficient
precision.
"""
input = numpy.asarray(input)
output, return_value = _ni_support._get_output(output, input)
orders = _ni_support._normalize_sequence(order, input.ndim)
sigmas = _ni_support._normalize_sequence(sigma, input.ndim)
axes = range(input.ndim)
axes = [(axes[ii], sigmas[ii], orders[ii])
for ii in range(len(axes)) if sigmas[ii] > 1e-15]
if len(axes) > 0:
for axis, sigma, order in axes:
gaussian_filter1d(input, sigma, axis, order, output,
mode, cval)
input = output
else:
output[...] = input[...]
return return_value
def prewitt(input, axis = -1, output = None, mode = "reflect", cval = 0.0):
"""Calculate a Prewitt filter.
"""
input = numpy.asarray(input)
axis = _ni_support._check_axis(axis, input.ndim)
output, return_value = _ni_support._get_output(output, input)
correlate1d(input, [-1, 0, 1], axis, output, mode, cval, 0)
axes = [ii for ii in range(input.ndim) if ii != axis]
for ii in axes:
correlate1d(output, [1, 1, 1], ii, output, mode, cval, 0,)
return return_value
def sobel(input, axis = -1, output = None, mode = "reflect", cval = 0.0):
"""Calculate a Sobel filter.
"""
input = numpy.asarray(input)
axis = _ni_support._check_axis(axis, input.ndim)
output, return_value = _ni_support._get_output(output, input)
correlate1d(input, [-1, 0, 1], axis, output, mode, cval, 0)
axes = [ii for ii in range(input.ndim) if ii != axis]
for ii in axes:
correlate1d(output, [1, 2, 1], ii, output, mode, cval, 0)
return return_value
def generic_laplace(input, derivative2, output = None, mode = "reflect",
cval = 0.0, extra_arguments = (), extra_keywords = {}):
"""Calculate a multidimensional laplace filter using the provided
second derivative function.
The derivative2 parameter must be a callable with the following
signature:
derivative2(input, axis, output, mode, cval,
*extra_arguments, **extra_keywords)
The extra_arguments and extra_keywords arguments can be used to pass
extra arguments and keywords that are passed to derivative2 at each
call.
"""
input = numpy.asarray(input)
output, return_value = _ni_support._get_output(output, input)
axes = range(input.ndim)
if len(axes) > 0:
derivative2(input, axes[0], output, mode, cval,
*extra_arguments, **extra_keywords)
for ii in range(1, len(axes)):
tmp = derivative2(input, axes[ii], output.dtype, mode, cval,
*extra_arguments, **extra_keywords)
output += tmp
else:
output[...] = input[...]
return return_value
def laplace(input, output = None, mode = "reflect", cval = 0.0):
"""Calculate a multidimensional laplace filter using an estimation
for the second derivative based on differences.
"""
def derivative2(input, axis, output, mode, cval):
return correlate1d(input, [1, -2, 1], axis, output, mode, cval, 0)
return generic_laplace(input, derivative2, output, mode, cval)
def gaussian_laplace(input, sigma, output = None, mode = "reflect",
cval = 0.0):
"""Calculate a multidimensional laplace filter using gaussian
second derivatives.
The standard-deviations of the Gaussian filter are given for each
axis as a sequence, or as a single number, in which case it is
equal for all axes..
"""
input = numpy.asarray(input)
def derivative2(input, axis, output, mode, cval, sigma):
order = [0] * input.ndim
order[axis] = 2
return gaussian_filter(input, sigma, order, output, mode, cval)
return generic_laplace(input, derivative2, output, mode, cval,
extra_arguments = (sigma,))
def generic_gradient_magnitude(input, derivative, output = None,
mode = "reflect", cval = 0.0,
extra_arguments = (), extra_keywords = {}):
"""Calculate a gradient magnitude using the provdide function for
the gradient.
The derivative parameter must be a callable with the following
signature:
derivative(input, axis, output, mode, cval,
*extra_arguments, **extra_keywords)
The extra_arguments and extra_keywords arguments can be used to pass
extra arguments and keywords that are passed to derivative2 at each
call.
"""
input = numpy.asarray(input)
output, return_value = _ni_support._get_output(output, input)
axes = range(input.ndim)
if len(axes) > 0:
derivative(input, axes[0], output, mode, cval,
*extra_arguments, **extra_keywords)
numpy.multiply(output, output, output)
for ii in range(1, len(axes)):
tmp = derivative(input, axes[ii], output.dtype, mode, cval,
*extra_arguments, **extra_keywords)
numpy.multiply(tmp, tmp, tmp)
output += tmp
numpy.sqrt(output, output)
else:
output[...] = input[...]
return return_value
def gaussian_gradient_magnitude(input, sigma, output = None,
mode = "reflect", cval = 0.0):
"""Calculate a multidimensional gradient magnitude using gaussian
derivatives.
The standard-deviations of the Gaussian filter are given for each
axis as a sequence, or as a single number, in which case it is
equal for all axes..
"""
input = numpy.asarray(input)
def derivative(input, axis, output, mode, cval, sigma):
order = [0] * input.ndim
order[axis] = 1
return gaussian_filter(input, sigma, order, output, mode, cval)
return generic_gradient_magnitude(input, derivative, output, mode,
cval, extra_arguments = (sigma,))
def _correlate_or_convolve(input, weights, output, mode, cval, origin,
convolution):
input = numpy.asarray(input)
if numpy.iscomplexobj(int):
raise TypeError, 'Complex type not supported'
origins = _ni_support._normalize_sequence(origin, input.ndim)
weights = numpy.asarray(weights, dtype = numpy.float64)
wshape = [ii for ii in weights.shape if ii > 0]
if len(wshape) != input.ndim:
raise RuntimeError, 'filter weights array has incorrect shape.'
if convolution:
weights = weights[tuple([slice(None, None, -1)] * weights.ndim)]
for ii in range(len(origins)):
origins[ii] = -origins[ii]
if not weights.shape[ii] & 1:
origins[ii] -= 1
for origin, lenw in zip(origins, wshape):
if (lenw // 2 + origin < 0) or (lenw // 2 + origin > lenw):
raise ValueError, 'invalid origin'
if not weights.flags.contiguous:
weights = weights.copy()
output, return_value = _ni_support._get_output(output, input)
mode = _ni_support._extend_mode_to_code(mode)
_nd_image.correlate(input, weights, output, mode, cval, origins)
return return_value
def correlate(input, weights, output = None, mode = 'reflect', cval = 0.0,
origin = 0):
"""Multi-dimensional correlation.
The array is correlated with the given kernel.
"""
return _correlate_or_convolve(input, weights, output, mode, cval,
origin, False)
def convolve(input, weights, output = None, mode = 'reflect', cval = 0.0,
origin = 0):
"""Multi-dimensional convolution.
The array is convolved with the given kernel.
"""
return _correlate_or_convolve(input, weights, output, mode, cval,
origin, True)
def uniform_filter1d(input, size, axis = -1, output = None,
mode = "reflect", cval = 0.0, origin = 0):
"""Calculate a one-dimensional uniform filter along the given axis.
The lines of the array along the given axis are filtered with a
uniform filter of given size."""
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError, 'Complex type not supported'
axis = _ni_support._check_axis(axis, input.ndim)
if size < 1:
raise RuntimeError, 'incorrect filter size'
output, return_value = _ni_support._get_output(output, input)
if (size // 2 + origin < 0) or (size // 2 + origin > size):
raise ValueError, 'invalid origin'
mode = _ni_support._extend_mode_to_code(mode)
_nd_image.uniform_filter1d(input, size, axis, output, mode, cval,
origin)
return return_value
def uniform_filter(input, size = 3, output = None, mode = "reflect",
cval = 0.0, origin = 0):
"""Multi-dimensional uniform filter.
The sizes of the uniform filter are given for each axis as a
sequence, or as a single number, in which case the size is equal
for all axes.
The multi-dimensional filter is implemented as a sequence of
one-dimensional uniform filters. The intermediate arrays are stored
in the same data type as the output. Therefore, for output types
with a limited precision, the results may be imprecise because
intermediate results may be stored with insufficient precision.
"""
input = numpy.asarray(input)
output, return_value = _ni_support._get_output(output, input)
sizes = _ni_support._normalize_sequence(size, input.ndim)
origins = _ni_support._normalize_sequence(origin, input.ndim)
axes = range(input.ndim)
axes = [(axes[ii], sizes[ii], origins[ii])
for ii in range(len(axes)) if sizes[ii] > 1]
if len(axes) > 0:
for axis, size, origin in axes:
uniform_filter1d(input, int(size), axis, output, mode,
cval, origin)
input = output
else:
output[...] = input[...]
return return_value
def minimum_filter1d(input, size, axis = -1, output = None,
mode = "reflect", cval = 0.0, origin = 0):
"""Calculate a one-dimensional minimum filter along the given axis.
The lines of the array along the given axis are filtered with a
minimum filter of given size."""
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError, 'Complex type not supported'
axis = _ni_support._check_axis(axis, input.ndim)
if size < 1:
raise RuntimeError, 'incorrect filter size'
output, return_value = _ni_support._get_output(output, input)
if (size // 2 + origin < 0) or (size // 2 + origin > size):
raise ValueError, 'invalid origin'
mode = _ni_support._extend_mode_to_code(mode)
_nd_image.min_or_max_filter1d(input, size, axis, output, mode, cval,
origin, 1)
return return_value
def maximum_filter1d(input, size, axis = -1, output = None,
mode = "reflect", cval = 0.0, origin = 0):
"""Calculate a one-dimensional maximum filter along the given axis.
The lines of the array along the given axis are filtered with a
maximum filter of given size."""
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError, 'Complex type not supported'
axis = _ni_support._check_axis(axis, input.ndim)
if size < 1:
raise RuntimeError, 'incorrect filter size'
output, return_value = _ni_support._get_output(output, input)
if (size // 2 + origin < 0) or (size // 2 + origin > size):
raise ValueError, 'invalid origin'
mode = _ni_support._extend_mode_to_code(mode)
_nd_image.min_or_max_filter1d(input, size, axis, output, mode, cval,
origin, 0)
return return_value
def _min_or_max_filter(input, size, footprint, structure, output, mode,
cval, origin, minimum):
if structure is None:
if footprint is None:
if size is None:
raise RuntimeError, "no footprint provided"
separable= True
else:
footprint = numpy.asarray(footprint)
footprint = footprint.astype(bool)
if numpy.alltrue(numpy.ravel(footprint),axis=0):
size = footprint.shape
footprint = None
separable = True
else:
separable = False
else:
structure = numpy.asarray(structure, dtype = numpy.float64)
separable = False
if footprint is None:
footprint = numpy.ones(structure.shape, bool)
else:
footprint = numpy.asarray(footprint)
footprint = footprint.astype(bool)
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError, 'Complex type not supported'
output, return_value = _ni_support._get_output(output, input)
origins = _ni_support._normalize_sequence(origin, input.ndim)
if separable:
sizes = _ni_support._normalize_sequence(size, input.ndim)
axes = range(input.ndim)
axes = [(axes[ii], sizes[ii], origins[ii])
for ii in range(len(axes)) if sizes[ii] > 1]
if minimum:
filter = minimum_filter1d
else:
filter = maximum_filter1d
if len(axes) > 0:
for axis, size, origin in axes:
filter(input, int(size), axis, output, mode, cval, origin)
input = output
else:
output[...] = input[...]
else:
fshape = [ii for ii in footprint.shape if ii > 0]
if len(fshape) != input.ndim:
raise RuntimeError, 'footprint array has incorrect shape.'
for origin, lenf in zip(origins, fshape):
if (lenf // 2 + origin < 0) or (lenf // 2 + origin > lenf):
raise ValueError, 'invalid origin'
if not footprint.flags.contiguous:
footprint = footprint.copy()
if structure is not None:
if len(structure.shape) != input.ndim:
raise RuntimeError, 'structure array has incorrect shape'
if not structure.flags.contiguous:
structure = structure.copy()
mode = _ni_support._extend_mode_to_code(mode)
_nd_image.min_or_max_filter(input, footprint, structure, output,
mode, cval, origins, minimum)
return return_value
def minimum_filter(input, size = None, footprint = None, output = None,
mode = "reflect", cval = 0.0, origin = 0):
"""Calculates a multi-dimensional minimum filter.
Either a size or a footprint with the filter must be
provided. An output array can optionally be provided. The origin
parameter controls the placement of the filter. The mode parameter
determines how the array borders are handled, where cval is the
value when mode is equal to 'constant'.
"""
return _min_or_max_filter(input, size, footprint, None, output, mode,
cval, origin, 1)
def maximum_filter(input, size = None, footprint = None, output = None,
mode = "reflect", cval = 0.0, origin = 0):
"""Calculates a multi-dimensional maximum filter.
Either a size or a footprint with the filter must be
provided. An output array can optionally be provided. The origin
parameter controls the placement of the filter. The mode parameter
determines how the array borders are handled, where cval is the
value when mode is equal to 'constant'.
"""
return _min_or_max_filter(input, size, footprint, None, output, mode,
cval, origin, 0)
def _rank_filter(input, rank, size = None, footprint = None, output = None,
mode = "reflect", cval = 0.0, origin = 0, operation = 'rank'):
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError, 'Complex type not supported'
origins = _ni_support._normalize_sequence(origin, input.ndim)
if footprint == None:
if size == None:
raise RuntimeError, "no footprint or filter size provided"
sizes = _ni_support._normalize_sequence(size, input.ndim)
footprint = numpy.ones(sizes, dtype = bool)
else:
footprint = numpy.asarray(footprint, dtype = bool)
fshape = [ii for ii in footprint.shape if ii > 0]
if len(fshape) != input.ndim:
raise RuntimeError, 'filter footprint array has incorrect shape.'
for origin, lenf in zip(origins, fshape):
if (lenf // 2 + origin < 0) or (lenf // 2 + origin > lenf):
raise ValueError, 'invalid origin'
if not footprint.flags.contiguous:
footprint = footprint.copy()
filter_size = numpy.where(footprint, 1, 0).sum()
if operation == 'median':
rank = filter_size // 2
elif operation == 'percentile':
percentile = rank
if percentile < 0.0:
percentile += 100.0
if percentile < 0 or percentile > 100:
raise RuntimeError, 'invalid percentile'
if percentile == 100.0:
rank = filter_size - 1
else:
rank = int(float(filter_size) * percentile / 100.0)
if rank < 0:
rank += filter_size
if rank < 0 or rank >= filter_size:
raise RuntimeError, 'rank not within filter footprint size'
if rank == 0:
return minimum_filter(input, None, footprint, output, mode, cval,
origin)
elif rank == filter_size - 1:
return maximum_filter(input, None, footprint, output, mode, cval,
origin)
else:
output, return_value = _ni_support._get_output(output, input)
mode = _ni_support._extend_mode_to_code(mode)
_nd_image.rank_filter(input, rank, footprint, output, mode, cval,
origins)
return return_value
def rank_filter(input, rank, size = None, footprint = None, output = None,
mode = "reflect", cval = 0.0, origin = 0):
"""Calculates a multi-dimensional rank filter.
The rank parameter may be less then zero, i.e., rank = -1
indicates the larges element. Either a size or a footprint with
the filter must be provided. An output array can optionally be
provided. The origin parameter controls the placement of the
filter. The mode parameter determines how the array borders are
handled, where cval is the value when mode is equal to 'constant'.
"""
return _rank_filter(input, rank, size, footprint, output, mode, cval,
origin, 'rank')
def median_filter(input, size = None, footprint = None, output = None,
mode = "reflect", cval = 0.0, origin = 0):
"""Calculates a multi-dimensional median filter.
Either a size or a footprint with the filter must be provided. An
output array can optionally be provided. The origin parameter
controls the placement of the filter. The mode parameter
determines how the array borders are handled, where cval is the
value when mode is equal to 'constant'.
"""
return _rank_filter(input, 0, size, footprint, output, mode, cval,
origin, 'median')
def percentile_filter(input, percentile, size = None, footprint = None,
output = None, mode = "reflect", cval = 0.0, origin = 0):
"""Calculates a multi-dimensional percentile filter.
The percentile parameter may be less then zero, i.e., percentile =
-20 equals percentile = 80. Either a size or a footprint with the
filter must be provided. An output array can optionally be
provided. The origin parameter controls the placement of the
filter. The mode parameter determines how the array borders are
handled, where cval is the value when mode is equal to 'constant'.
"""
return _rank_filter(input, percentile, size, footprint, output, mode,
cval, origin, 'percentile')
def generic_filter1d(input, function, filter_size, axis = -1,
output = None, mode = "reflect", cval = 0.0, origin = 0,
extra_arguments = (), extra_keywords = {}):
"""Calculate a one-dimensional filter along the given axis.
The function iterates over the lines of the array, calling the given
function at each line. The arguments of the line are the input line,
and the output line. The input and output lines are 1D double arrays.
The input line is extended appropiately according to the filter size
and origin. The output line must be modified in-place with the result.
The origin parameter controls the placement of the filter. The mode
parameter determines how the array borders are handled, where cval is
the value when mode is equal to 'constant'. The extra_arguments and
extra_keywords arguments can be used to pass extra arguments and
keywords that are passed to the function at each call."""
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError, 'Complex type not supported'
output, return_value = _ni_support._get_output(output, input)
if filter_size < 1:
raise RuntimeError, 'invalid filter size'
axis = _ni_support._check_axis(axis, input.ndim)
if ((filter_size // 2 + origin < 0) or
(filter_size // 2 + origin > filter_size)):
raise ValueError, 'invalid origin'
mode = _ni_support._extend_mode_to_code(mode)
_nd_image.generic_filter1d(input, function, filter_size, axis, output,
mode, cval, origin, extra_arguments, extra_keywords)
return return_value
def generic_filter(input, function, size = None, footprint = None,
output = None, mode = "reflect", cval = 0.0, origin = 0,
extra_arguments = (), extra_keywords = {}):
"""Calculates a multi-dimensional filter using the given function.
At each element the provided function is called. The input values
within the filter footprint at that element are passed to the function
as a 1D array of double values.
Either a size or a footprint with the filter must be provided. An
output array can optionally be provided. The origin parameter
controls the placement of the filter. The mode parameter
determines how the array borders are handled, where cval is the
value when mode is equal to 'constant'. The extra_arguments and
extra_keywords arguments can be used to pass extra arguments and
keywords that are passed to the function at each call."""
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError, 'Complex type not supported'
origins = _ni_support._normalize_sequence(origin, input.ndim)
if footprint == None:
if size == None:
raise RuntimeError, "no footprint or filter size provided"
sizes = _ni_support._normalize_sequence(size, input.ndim)
footprint = numpy.ones(size, dtype = bool)
else:
footprint = numpy.asarray(footprint)
footprint = footprint.astype(bool)
fshape = [ii for ii in footprint.shape if ii > 0]
if len(fshape) != input.ndim:
raise RuntimeError, 'filter footprint array has incorrect shape.'
for origin, lenf in zip(origins, fshape):
if (lenf // 2 + origin < 0) or (lenf // 2 + origin > lenf):
raise ValueError, 'invalid origin'
if not footprint.flags.contiguous:
footprint = footprint.copy()
output, return_value = _ni_support._get_output(output, input)
mode = _ni_support._extend_mode_to_code(mode)
_nd_image.generic_filter(input, function, footprint, output, mode,
cval, origins, extra_arguments, extra_keywords)
return return_value
|