1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
## Automatically adapted for scipy Oct 07, 2005 by convertcode.py
## License for the Python wrapper
## ==============================
## Copyright (c) 2004 David M. Cooke <cookedm@physics.mcmaster.ca>
## Permission is hereby granted, free of charge, to any person obtaining a copy of
## this software and associated documentation files (the "Software"), to deal in
## the Software without restriction, including without limitation the rights to
## use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
## of the Software, and to permit persons to whom the Software is furnished to do
## so, subject to the following conditions:
## The above copyright notice and this permission notice shall be included in all
## copies or substantial portions of the Software.
## THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
## IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
## FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
## AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
## LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
## OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
## SOFTWARE.
## Modifications by Travis Oliphant and Enthought, Inc. for inclusion in SciPy
from numpy import zeros, float64, array, int32
import _lbfgsb
import optimize
approx_fprime = optimize.approx_fprime
def fmin_l_bfgs_b(func, x0, fprime=None, args=(),
approx_grad=0,
bounds=None, m=10, factr=1e7, pgtol=1e-5,
epsilon=1e-8,
iprint=-1, maxfun=15000):
"""
Minimize a function func using the L-BFGS-B algorithm.
Arguments:
func -- function to minimize. Called as func(x, *args)
x0 -- initial guess to minimum
fprime -- gradient of func. If None, then func returns the function
value and the gradient ( f, g = func(x, *args) ), unless
approx_grad is True then func returns only f.
Called as fprime(x, *args)
args -- arguments to pass to function
approx_grad -- if true, approximate the gradient numerically and func returns
only function value.
bounds -- a list of (min, max) pairs for each element in x, defining
the bounds on that parameter. Use None for one of min or max
when there is no bound in that direction
m -- the maximum number of variable metric corrections
used to define the limited memory matrix. (the limited memory BFGS
method does not store the full hessian but uses this many terms in an
approximation to it).
factr -- The iteration stops when
(f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr*epsmch
where epsmch is the machine precision, which is automatically
generated by the code. Typical values for factr: 1e12 for
low accuracy; 1e7 for moderate accuracy; 10.0 for extremely
high accuracy.
pgtol -- The iteration will stop when
max{|proj g_i | i = 1, ..., n} <= pgtol
where pg_i is the ith component of the projected gradient.
epsilon -- step size used when approx_grad is true, for numerically
calculating the gradient
iprint -- controls the frequency of output. <0 means no output.
maxfun -- maximum number of function evaluations.
Returns:
x, f, d = fmin_lbfgs_b(func, x0, ...)
x -- position of the minimum
f -- value of func at the minimum
d -- dictionary of information from routine
d['warnflag'] is
0 if converged,
1 if too many function evaluations,
2 if stopped for another reason, given in d['task']
d['grad'] is the gradient at the minimum (should be 0 ish)
d['funcalls'] is the number of function calls made.
License of L-BFGS-B (Fortran code)
==================================
The version included here (in fortran code) is 2.1 (released in 1997). It was
written by Ciyou Zhu, Richard Byrd, and Jorge Nocedal <nocedal@ece.nwu.edu>. It
carries the following condition for use:
This software is freely available, but we expect that all publications
describing work using this software , or all commercial products using it,
quote at least one of the references given below.
References
* R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound
Constrained Optimization, (1995), SIAM Journal on Scientific and
Statistical Computing , 16, 5, pp. 1190-1208.
* C. Zhu, R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B,
FORTRAN routines for large scale bound constrained optimization (1997),
ACM Transactions on Mathematical Software, Vol 23, Num. 4, pp. 550 - 560.
See also:
scikits.openopt, which offers a unified syntax to call this and other solvers
fmin, fmin_powell, fmin_cg,
fmin_bfgs, fmin_ncg -- multivariate local optimizers
leastsq -- nonlinear least squares minimizer
fmin_l_bfgs_b, fmin_tnc,
fmin_cobyla -- constrained multivariate optimizers
anneal, brute -- global optimizers
fminbound, brent, golden, bracket -- local scalar minimizers
fsolve -- n-dimenstional root-finding
brentq, brenth, ridder, bisect, newton -- one-dimensional root-finding
fixed_point -- scalar fixed-point finder
"""
n = len(x0)
if bounds is None:
bounds = [(None,None)] * n
if len(bounds) != n:
raise ValueError('length of x0 != length of bounds')
if approx_grad:
def func_and_grad(x):
f = func(x, *args)
g = approx_fprime(x, func, epsilon, *args)
return f, g
elif fprime is None:
def func_and_grad(x):
f, g = func(x, *args)
return f, g
else:
def func_and_grad(x):
f = func(x, *args)
g = fprime(x, *args)
return f, g
nbd = zeros((n,), int32)
low_bnd = zeros((n,), float64)
upper_bnd = zeros((n,), float64)
bounds_map = {(None, None): 0,
(1, None) : 1,
(1, 1) : 2,
(None, 1) : 3}
for i in range(0, n):
l,u = bounds[i]
if l is not None:
low_bnd[i] = l
l = 1
if u is not None:
upper_bnd[i] = u
u = 1
nbd[i] = bounds_map[l, u]
x = array(x0, float64)
f = array(0.0, float64)
g = zeros((n,), float64)
wa = zeros((2*m*n+4*n + 12*m**2 + 12*m,), float64)
iwa = zeros((3*n,), int32)
task = zeros(1, 'S60')
csave = zeros(1,'S60')
lsave = zeros((4,), int32)
isave = zeros((44,), int32)
dsave = zeros((29,), float64)
task[:] = 'START'
n_function_evals = 0
while 1:
# x, f, g, wa, iwa, task, csave, lsave, isave, dsave = \
_lbfgsb.setulb(m, x, low_bnd, upper_bnd, nbd, f, g, factr,
pgtol, wa, iwa, task, iprint, csave, lsave,
isave, dsave)
task_str = task.tostring()
if task_str.startswith('FG'):
# minimization routine wants f and g at the current x
n_function_evals += 1
# Overwrite f and g:
f, g = func_and_grad(x)
elif task_str.startswith('NEW_X'):
# new iteration
if n_function_evals > maxfun:
task[:] = 'STOP: TOTAL NO. of f AND g EVALUATIONS EXCEEDS LIMIT'
else:
break
task_str = task.tostring().strip('\x00').strip()
if task_str.startswith('CONV'):
warnflag = 0
elif n_function_evals > maxfun:
warnflag = 1
else:
warnflag = 2
d = {'grad' : g,
'task' : task_str,
'funcalls' : n_function_evals,
'warnflag' : warnflag
}
return x, f, d
if __name__ == '__main__':
def func(x):
f = 0.25*(x[0]-1)**2
for i in range(1, x.shape[0]):
f += (x[i] - x[i-1]**2)**2
f *= 4
return f
def grad(x):
g = zeros(x.shape, float64)
t1 = x[1] - x[0]**2
g[0] = 2*(x[0]-1) - 16*x[0]*t1
for i in range(1, g.shape[0]-1):
t2 = t1
t1 = x[i+1] - x[i]**2
g[i] = 8*t2 - 16*x[i]*t1
g[-1] = 8*t1
return g
factr = 1e7
pgtol = 1e-5
n=25
m=10
bounds = [(None,None)] * n
for i in range(0, n, 2):
bounds[i] = (1.0, 100)
for i in range(1, n, 2):
bounds[i] = (-100, 100)
x0 = zeros((n,), float64)
x0[:] = 3
x, f, d = fmin_l_bfgs_b(func, x0, fprime=grad, m=m,
factr=factr, pgtol=pgtol)
print x
print f
print d
x, f, d = fmin_l_bfgs_b(func, x0, approx_grad=1,
m=m, factr=factr, pgtol=pgtol)
print x
print f
print d
|