1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
|
"""
Nonlinear solvers
=================
These solvers find x for which F(x)=0. Both x and F is multidimensional.
They accept the user defined function F, which accepts a python tuple x and it
should return F(x), which can be either a tuple, or numpy array.
Example:
def F(x):
"Should converge to x=[0,0,0,0,0]"
import numpy
d = numpy.array([3,2,1.5,1,0.5])
c = 0.01
return -d*numpy.array(x)-c*numpy.array(x)**3
from scipy import optimize
x = optimize.broyden2(F,[1,1,1,1,1])
All solvers have the parameter iter (the number of iterations to compute), some
of them have other parameters of the solver, see the particular solver for
details.
A collection of general-purpose nonlinear multidimensional solvers.
broyden1 -- Broyden's first method - is a quasi-Newton-Raphson
method for updating an approximate Jacobian and then
inverting it
broyden2 -- Broyden's second method - the same as broyden1, but
updates the inverse Jacobian directly
broyden3 -- Broyden's second method - the same as broyden2, but
instead of directly computing the inverse Jacobian,
it remembers how to construct it using vectors, and
when computing inv(J)*F, it uses those vectors to
compute this product, thus avoding the expensive NxN
matrix multiplication.
broyden_generalized -- Generalized Broyden's method, the same as broyden2,
but instead of approximating the full NxN Jacobian,
it construct it at every iteration in a way that
avoids the NxN matrix multiplication. This is not
as precise as broyden3.
anderson -- extended Anderson method, the same as the
broyden_generalized, but added w_0^2*I to before
taking inversion to improve the stability
anderson2 -- the Anderson method, the same as anderson, but
formulated differently
The broyden2 is the best. For large systems, use broyden3. excitingmixing is
also very effective. There are some more solvers implemented (see their
docstrings), however, those are of mediocre quality.
Utility Functions
norm -- Returns an L2 norm of the vector
"""
import math
import numpy
def mlog(x):
if x==0.:
return 13
else:
return math.log(x)
def norm(v):
"""Returns an L2 norm of the vector."""
return math.sqrt(numpy.sum((numpy.array(v)**2).flat))
def myF(F,xm):
return numpy.matrix(F(tuple(xm.flat))).T
def difference(a,b):
m=0.
for x,y in zip(a,b):
m+=(x-y)**2
return math.sqrt(m)
def sum(a,b):
return [ai+bi for ai,bi in zip(a,b)]
def mul(C,b):
return [C*bi for bi in b]
def solve(A,b):
"""Solve Ax=b, returns x"""
try:
from scipy import linalg
return linalg.solve(A,b)
except:
return A.I*b
def broyden2(F, xin, iter=10, alpha=0.4, verbose = False):
"""Broyden's second method.
Updates inverse Jacobian by an optimal formula.
There is NxN matrix multiplication in every iteration.
The best norm |F(x)|=0.003 achieved in ~20 iterations.
Recommended.
"""
xm=numpy.matrix(xin).T
Fxm=myF(F,xm)
Gm=-alpha*numpy.matrix(numpy.identity(len(xin)))
for n in range(iter):
deltaxm=-Gm*Fxm
xm=xm+deltaxm
Fxm1=myF(F,xm)
deltaFxm=Fxm1-Fxm
Fxm=Fxm1
Gm=Gm+(deltaxm-Gm*deltaFxm)*deltaFxm.T/norm(deltaFxm)**2
if verbose:
print "%d: |F(x)|=%.3f"%(n+1, norm(Fxm))
return xm.flat
def broyden3(F, xin, iter=10, alpha=0.4, verbose = False):
"""Broyden's second method.
Updates inverse Jacobian by an optimal formula.
The NxN matrix multiplication is avoided.
The best norm |F(x)|=0.003 achieved in ~20 iterations.
Recommended.
"""
zy=[]
def updateG(z,y):
"G:=G+z*y.T"
zy.append((z,y))
def Gmul(f):
"G=-alpha*1+z*y.T+z*y.T ..."
s=-alpha*f
for z,y in zy:
s=s+z*(y.T*f)
return s
xm=numpy.matrix(xin).T
Fxm=myF(F,xm)
# Gm=-alpha*numpy.matrix(numpy.identity(len(xin)))
for n in range(iter):
#deltaxm=-Gm*Fxm
deltaxm=Gmul(-Fxm)
xm=xm+deltaxm
Fxm1=myF(F,xm)
deltaFxm=Fxm1-Fxm
Fxm=Fxm1
#Gm=Gm+(deltaxm-Gm*deltaFxm)*deltaFxm.T/norm(deltaFxm)**2
updateG(deltaxm-Gmul(deltaFxm),deltaFxm/norm(deltaFxm)**2)
if verbose:
print "%d: |F(x)|=%.3f"%(n+1, norm(Fxm))
return xm.flat
def broyden_generalized(F, xin, iter=10, alpha=0.1, M=5, verbose = False):
"""Generalized Broyden's method.
Computes an approximation to the inverse Jacobian from the last M
interations. Avoids NxN matrix multiplication, it only has MxM matrix
multiplication and inversion.
M=0 .... linear mixing
M=1 .... Anderson mixing with 2 iterations
M=2 .... Anderson mixing with 3 iterations
etc.
optimal is M=5
"""
xm=numpy.matrix(xin).T
Fxm=myF(F,xm)
G0=-alpha
dxm=[]
dFxm=[]
for n in range(iter):
deltaxm=-G0*Fxm
if M>0:
MM=min(M,n)
for m in range(n-MM,n):
deltaxm=deltaxm-(float(gamma[m-(n-MM)])*dxm[m]-G0*dFxm[m])
xm=xm+deltaxm
Fxm1=myF(F,xm)
deltaFxm=Fxm1-Fxm
Fxm=Fxm1
if M>0:
dxm.append(deltaxm)
dFxm.append(deltaFxm)
MM=min(M,n+1)
a=numpy.matrix(numpy.empty((MM,MM)))
for i in range(n+1-MM,n+1):
for j in range(n+1-MM,n+1):
a[i-(n+1-MM),j-(n+1-MM)]=dFxm[i].T*dFxm[j]
dFF=numpy.matrix(numpy.empty(MM)).T
for k in range(n+1-MM,n+1):
dFF[k-(n+1-MM)]=dFxm[k].T*Fxm
gamma=a.I*dFF
if verbose:
print "%d: |F(x)|=%.3f"%(n, norm(Fxm))
return xm.flat
def anderson(F, xin, iter=10, alpha=0.1, M=5, w0=0.01, verbose = False):
"""Extended Anderson method.
Computes an approximation to the inverse Jacobian from the last M
interations. Avoids NxN matrix multiplication, it only has MxM matrix
multiplication and inversion.
M=0 .... linear mixing
M=1 .... Anderson mixing with 2 iterations
M=2 .... Anderson mixing with 3 iterations
etc.
optimal is M=5
"""
xm=numpy.matrix(xin).T
Fxm=myF(F,xm)
dxm=[]
dFxm=[]
for n in range(iter):
deltaxm=alpha*Fxm
if M>0:
MM=min(M,n)
for m in range(n-MM,n):
deltaxm=deltaxm-(float(gamma[m-(n-MM)])*dxm[m]+alpha*dFxm[m])
xm=xm+deltaxm
Fxm1=myF(F,xm)
deltaFxm=Fxm1-Fxm
Fxm=Fxm1
if M>0:
dxm.append(deltaxm)
dFxm.append(deltaFxm)
MM=min(M,n+1)
a=numpy.matrix(numpy.empty((MM,MM)))
for i in range(n+1-MM,n+1):
for j in range(n+1-MM,n+1):
if i==j: wd=w0**2
else: wd=0
a[i-(n+1-MM),j-(n+1-MM)]=(1+wd)*dFxm[i].T*dFxm[j]
dFF=numpy.matrix(numpy.empty(MM)).T
for k in range(n+1-MM,n+1):
dFF[k-(n+1-MM)]=dFxm[k].T*Fxm
gamma=solve(a,dFF)
# print gamma
if verbose:
print "%d: |F(x)|=%.3f"%(n, norm(Fxm))
return xm.flat
def anderson2(F, xin, iter=10, alpha=0.1, M=5, w0=0.01, verbose = False):
"""Anderson method.
M=0 .... linear mixing
M=1 .... Anderson mixing with 2 iterations
M=2 .... Anderson mixing with 3 iterations
etc.
optimal is M=5
"""
xm=numpy.matrix(xin).T
Fxm=myF(F,xm)
dFxm=[]
for n in range(iter):
deltaxm=Fxm
if M>0:
MM=min(M,n)
for m in range(n-MM,n):
deltaxm=deltaxm+float(theta[m-(n-MM)])*(dFxm[m]-Fxm)
deltaxm=deltaxm*alpha
xm=xm+deltaxm
Fxm1=myF(F,xm)
deltaFxm=Fxm1-Fxm
Fxm=Fxm1
if M>0:
dFxm.append(Fxm-deltaFxm)
MM=min(M,n+1)
a=numpy.matrix(numpy.empty((MM,MM)))
for i in range(n+1-MM,n+1):
for j in range(n+1-MM,n+1):
if i==j: wd=w0**2
else: wd=0
a[i-(n+1-MM),j-(n+1-MM)]= \
(1+wd)*(Fxm-dFxm[i]).T*(Fxm-dFxm[j])
dFF=numpy.matrix(numpy.empty(MM)).T
for k in range(n+1-MM,n+1):
dFF[k-(n+1-MM)]=(Fxm-dFxm[k]).T*Fxm
theta=solve(a,dFF)
# print gamma
if verbose:
print "%d: |F(x)|=%.3f"%(n, norm(Fxm))
return xm.flat
def broyden_modified(F, xin, iter=10, alpha=0.35, w0=0.01, wl=5, verbose = False):
"""Modified Broyden's method.
Updates inverse Jacobian using information from all the iterations and
avoiding the NxN matrix multiplication. The problem is with the weights,
it converges the same or worse than broyden2 or broyden_generalized
"""
xm=numpy.matrix(xin).T
Fxm=myF(F,xm)
G0=alpha
w=[]
u=[]
dFxm=[]
for n in range(iter):
deltaxm=G0*Fxm
for i in range(n):
for j in range(n):
deltaxm-=w[i]*w[j]*betta[i,j]*u[j]*(dFxm[i].T*Fxm)
xm+=deltaxm
Fxm1=myF(F,xm)
deltaFxm=Fxm1-Fxm
Fxm=Fxm1
w.append(wl/norm(Fxm))
u.append((G0*deltaFxm+deltaxm)/norm(deltaFxm))
dFxm.append(deltaFxm/norm(deltaFxm))
a=numpy.matrix(numpy.empty((n+1,n+1)))
for i in range(n+1):
for j in range(n+1):
a[i,j]=w[i]*w[j]*dFxm[j].T*dFxm[i]
betta=(w0**2*numpy.matrix(numpy.identity(n+1))+a).I
if verbose:
print "%d: |F(x)|=%.3f"%(n, norm(Fxm))
return xm.flat
def broyden1(F, xin, iter=10, alpha=0.1, verbose = False):
"""Broyden's first method.
Updates Jacobian and computes inv(J) by a matrix inversion at every
iteration. It's very slow.
The best norm |F(x)|=0.005 achieved in ~45 iterations.
"""
xm=numpy.matrix(xin).T
Fxm=myF(F,xm)
Jm=-1/alpha*numpy.matrix(numpy.identity(len(xin)))
for n in range(iter):
deltaxm=solve(-Jm,Fxm)
#!!!! What the fuck?!
#xm+=deltaxm
xm=xm+deltaxm
Fxm1=myF(F,xm)
deltaFxm=Fxm1-Fxm
Fxm=Fxm1
Jm=Jm+(deltaFxm-Jm*deltaxm)*deltaxm.T/norm(deltaxm)**2
if verbose:
print "%d: |F(x)|=%.3f"%(n, norm(Fxm))
return xm.flat
def broyden1_modified(F, xin, iter=10, alpha=0.1, verbose = False):
"""Broyden's first method, modified by O. Certik.
Updates inverse Jacobian using some matrix identities at every iteration,
its faster then newton_slow, but still not optimal.
The best norm |F(x)|=0.005 achieved in ~45 iterations.
"""
def inv(A,u,v):
#interesting is that this
#return (A.I+u*v.T).I
#is more stable than
#return A-A*u*v.T*A/float(1+v.T*A*u)
Au=A*u
return A-Au*(v.T*A)/float(1+v.T*Au)
xm=numpy.matrix(xin).T
Fxm=myF(F,xm)
Jm=alpha*numpy.matrix(numpy.identity(len(xin)))
for n in range(iter):
deltaxm=Jm*Fxm
xm=xm+deltaxm
Fxm1=myF(F,xm)
deltaFxm=Fxm1-Fxm
Fxm=Fxm1
# print "-------------",norm(deltaFxm),norm(deltaxm)
deltaFxm/=norm(deltaxm)
deltaxm/=norm(deltaxm)
Jm=inv(Jm+deltaxm*deltaxm.T*Jm,-deltaFxm,deltaxm)
if verbose:
print "%d: |F(x)|=%.3f"%(n, norm(Fxm))
return xm
def vackar(F, xin, iter=10, alpha=0.1, verbose = False):
"""J=diag(d1,d2,...,dN)
The best norm |F(x)|=0.005 achieved in ~110 iterations.
"""
def myF(F,xm):
return numpy.array(F(tuple(xm.flat))).T
xm=numpy.array(xin)
Fxm=myF(F,xm)
d=1/alpha*numpy.ones(len(xin))
Jm=numpy.matrix(numpy.diag(d))
for n in range(iter):
deltaxm=1/d*Fxm
xm=xm+deltaxm
Fxm1=myF(F,xm)
deltaFxm=Fxm1-Fxm
Fxm=Fxm1
d=d-(deltaFxm+d*deltaxm)*deltaxm/norm(deltaxm)**2
if verbose:
print "%d: |F(x)|=%.3f"%(n, norm(Fxm))
return xm
def linearmixing(F,xin, iter=10, alpha=0.1, verbose = False):
"""J=-1/alpha
The best norm |F(x)|=0.005 achieved in ~140 iterations.
"""
def myF(F,xm):
return numpy.array(F(tuple(xm.flat))).T
xm=numpy.array(xin)
Fxm=myF(F,xm)
for n in range(iter):
deltaxm=alpha*Fxm
xm=xm+deltaxm
Fxm1=myF(F,xm)
deltaFxm=Fxm1-Fxm
Fxm=Fxm1
if verbose:
print "%d: |F(x)|=%.3f" %(n,norm(Fxm))
return xm
def excitingmixing(F,xin,iter=10,alpha=0.1,alphamax=1.0, verbose = False):
"""J=-1/alpha
The best norm |F(x)|=0.005 achieved in ~140 iterations.
"""
def myF(F,xm):
return numpy.array(F(tuple(xm.flat))).T
xm=numpy.array(xin)
beta=numpy.array([alpha]*len(xm))
Fxm=myF(F,xm)
for n in range(iter):
deltaxm=beta*Fxm
xm=xm+deltaxm
Fxm1=myF(F,xm)
deltaFxm=Fxm1-Fxm
for i in range(len(xm)):
if Fxm1[i]*Fxm[i] > 0:
beta[i]=beta[i]+alpha
if beta[i] > alphamax:
beta[i] = alphamax
else:
beta[i]=alpha
Fxm=Fxm1
if verbose:
print "%d: |F(x)|=%.3f" %(n,norm(Fxm))
return xm
|