1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
""" Unit tests for optimization routines
Author: Ed Schofield
Nov 2005
"""
from numpy.testing import *
set_package_path()
from scipy import optimize
from numpy import array, zeros, float64, dot, log, exp, inf
from scipy.optimize.tnc import RCSTRINGS, MSG_NONE
restore_path()
from math import sin, cos, pow
class test_optimize(NumpyTestCase):
""" Test case for a simple constrained entropy maximization problem
(the machine translation example of Berger et al in
Computational Linguistics, vol 22, num 1, pp 39--72, 1996.)
"""
def setUp(self):
self.F = array([[1,1,1],[1,1,0],[1,0,1],[1,0,0],[1,0,0]])
self.K = array([1., 0.3, 0.5])
self.startparams = zeros(3, float64)
self.solution = array([0., -0.524869316, 0.487525860])
self.maxiter = 1000
self.funccalls = 0
def func(self, x):
self.funccalls += 1
if self.funccalls > 6000:
raise RuntimeError, "too many iterations in optimization routine"
log_pdot = dot(self.F, x)
logZ = log(sum(exp(log_pdot)))
f = logZ - dot(self.K, x)
return f
def grad(self, x):
log_pdot = dot(self.F, x)
logZ = log(sum(exp(log_pdot)))
p = exp(log_pdot - logZ)
return dot(self.F.transpose(), p) - self.K
def check_cg(self):
""" conjugate gradient optimization routine
"""
retval = optimize.fmin_cg(self.func, self.startparams, self.grad, (), \
maxiter=self.maxiter, \
full_output=True, disp=False, retall=False)
(params, fopt, func_calls, grad_calls, warnflag) = retval
err = abs(self.func(params) - self.func(self.solution))
#print "CG: Difference is: " + str(err)
assert err < 1e-6
def check_bfgs(self):
""" Broyden-Fletcher-Goldfarb-Shanno optimization routine
"""
retval = optimize.fmin_bfgs(self.func, self.startparams, self.grad, \
args=(), maxiter=self.maxiter, \
full_output=True, disp=False, retall=False)
(params, fopt, gopt, Hopt, func_calls, grad_calls, warnflag) = retval
err = abs(self.func(params) - self.func(self.solution))
#print "BFGS: Difference is: " + str(err)
assert err < 1e-6
def check_powell(self):
""" Powell (direction set) optimization routine
"""
retval = optimize.fmin_powell(self.func, self.startparams, \
args=(), maxiter=self.maxiter, \
full_output=True, disp=False, retall=False)
(params, fopt, direc, numiter, func_calls, warnflag) = retval
err = abs(self.func(params) - self.func(self.solution))
#print "Powell: Difference is: " + str(err)
assert err < 1e-6
def check_neldermead(self):
""" Nelder-Mead simplex algorithm
"""
retval = optimize.fmin(self.func, self.startparams, \
args=(), maxiter=self.maxiter, \
full_output=True, disp=False, retall=False)
(params, fopt, numiter, func_calls, warnflag) = retval
err = abs(self.func(params) - self.func(self.solution))
#print "Nelder-Mead: Difference is: " + str(err)
assert err < 1e-6
def check_ncg(self):
""" line-search Newton conjugate gradient optimization routine
"""
retval = optimize.fmin_ncg(self.func, self.startparams, self.grad,
args=(), maxiter=self.maxiter,
full_output=False, disp=False,
retall=False)
params = retval
err = abs(self.func(params) - self.func(self.solution))
#print "NCG: Difference is: " + str(err)
assert err < 1e-6
def check_l_bfgs_b(self):
""" limited-memory bound-constrained BFGS algorithm
"""
retval = optimize.fmin_l_bfgs_b(self.func, self.startparams,
self.grad, args=(),
maxfun=self.maxiter)
(params, fopt, d) = retval
err = abs(self.func(params) - self.func(self.solution))
#print "LBFGSB: Difference is: " + str(err)
assert err < 1e-6
def test_brent(self):
""" brent algorithm
"""
x = optimize.brent(lambda x: (x-1.5)**2-0.8)
err1 = abs(x - 1.5)
x = optimize.brent(lambda x: (x-1.5)**2-0.8, brack = (-3,-2))
err2 = abs(x - 1.5)
x = optimize.brent(lambda x: (x-1.5)**2-0.8, full_output=True)
err3 = abs(x[0] - 1.5)
x = optimize.brent(lambda x: (x-1.5)**2-0.8, brack = (-15,-1,15))
err4 = abs(x - 1.5)
assert max((err1,err2,err3,err4)) < 1e-6
class test_tnc(NumpyTestCase):
"""TNC non-linear optimization.
These tests are taken from Prof. K. Schittkowski's test examples
for constrained non-linear programming.
http://www.uni-bayreuth.de/departments/math/~kschittkowski/home.htm
"""
tests = []
def setUp(self):
def test1fg(x):
f = 100.0*pow((x[1]-pow(x[0],2)),2)+pow(1.0-x[0],2)
dif = [0,0]
dif[1] = 200.0*(x[1]-pow(x[0],2))
dif[0] = -2.0*(x[0]*(dif[1]-1.0)+1.0)
return f, dif
self.tests.append((test1fg, [-2,1], ([-inf,None],[-1.5,None]),
[1,1]))
def test2fg(x):
f = 100.0*pow((x[1]-pow(x[0],2)),2)+pow(1.0-x[0],2)
dif = [0,0]
dif[1] = 200.0*(x[1]-pow(x[0],2))
dif[0] = -2.0*(x[0]*(dif[1]-1.0)+1.0)
return f, dif
self.tests.append((test2fg, [-2,1], [(-inf,None),(1.5,None)],
[-1.2210262419616387,1.5]))
def test3fg(x):
f = x[1]+pow(x[1]-x[0],2)*1.0e-5
dif = [0,0]
dif[0] = -2.0*(x[1]-x[0])*1.0e-5
dif[1] = 1.0-dif[0]
return f, dif
self.tests.append((test3fg, [10,1], [(-inf,None),(0.0, None)],
[0,0]))
def test4fg(x):
f = pow(x[0]+1.0,3)/3.0+x[1]
dif = [0,0]
dif[0] = pow(x[0]+1.0,2)
dif[1] = 1.0
return f, dif
self.tests.append((test4fg, [1.125,0.125], [(1, None),(0, None)],
[1,0]))
def test5fg(x):
f = sin(x[0]+x[1])+pow(x[0]-x[1],2)-1.5*x[0]+2.5*x[1]+1.0
dif = [0,0]
v1 = cos(x[0]+x[1]);
v2 = 2.0*(x[0]-x[1]);
dif[0] = v1+v2-1.5;
dif[1] = v1-v2+2.5;
return f, dif
self.tests.append((test5fg, [0,0], [(-1.5, 4),(-3,3)],
[-0.54719755119659763, -1.5471975511965976]))
def test38fg(x):
f = (100.0*pow(x[1]-pow(x[0],2),2) + \
pow(1.0-x[0],2)+90.0*pow(x[3]-pow(x[2],2),2) + \
pow(1.0-x[2],2)+10.1*(pow(x[1]-1.0,2)+pow(x[3]-1.0,2)) + \
19.8*(x[1]-1.0)*(x[3]-1.0))*1.0e-5
dif = [0,0,0,0]
dif[0] = (-400.0*x[0]*(x[1]-pow(x[0],2))-2.0*(1.0-x[0]))*1.0e-5
dif[1] = (200.0*(x[1]-pow(x[0],2))+20.2 \
*(x[1]-1.0)+19.8*(x[3]-1.0))*1.0e-5
dif[2] = (-360.0*x[2]*(x[3]-pow(x[2],2))-2.0\
*(1.0-x[2]))*1.0e-5
dif[3] = (180.0*(x[3]-pow(x[2],2))+20.2\
*(x[3]-1.0)+19.8*(x[1]-1.0))*1.0e-5
return f, dif
self.tests.append((test38fg, array([-3,-1,-3,-1]), [(-10,10)]*4, [1]*4))
def test45fg(x):
f = 2.0-x[0]*x[1]*x[2]*x[3]*x[4]/120.0
dif = [0]*5
dif[0] = -x[1]*x[2]*x[3]*x[4]/120.0
dif[1] = -x[0]*x[2]*x[3]*x[4]/120.0
dif[2] = -x[0]*x[1]*x[3]*x[4]/120.0
dif[3] = -x[0]*x[1]*x[2]*x[4]/120.0
dif[4] = -x[0]*x[1]*x[2]*x[3]/120.0
return f, dif
self.tests.append((test45fg, [2]*5, [(0,1),(0,2),(0,3),(0,4),(0,5)],
[1,2,3,4,5]))
def test_tnc(self):
for fg, x, bounds, xopt in self.tests:
x, nf, rc = optimize.fmin_tnc(fg, x, bounds=bounds,
messages=MSG_NONE, maxfun=200)
err = "Failed optimization of %s.\n" \
"After %d function evaluations, TNC returned: %s.""" % \
(fg.__name__, nf, RCSTRINGS[rc])
ef = abs(fg(xopt)[0] - fg(x)[0])
if ef > 1e-8:
raise err
if __name__ == "__main__":
NumpyTest().run()
|