1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
|
/*
Build regular grids from scattered 2D data.
Author: Eugene Druker, 2006 (eugene.druker@gmail.com)
Summary
========
Input:
a set of arbitrary displaced points in 2D plane,
grid geometry: x/y min/max and cell size,
a few (optional) control parameters
Output:
to a python list or to file
Method:
Put every input data point into nearest grid node (take average if more
than one), this is main source of errors. Apply empirical method of
building: make sequence of averagings with full interpolation. Use
distances from data points to remove far field values.
The method is fair for large data volumes (and grid sizes).
The method is irrelevant if (x,y) must be treated as exact values.
Details
========
Input data and parameters:
- (x,y,z) in file or in lists. Text XYZ-file contains lines of x, y, z
values, space divided. Lists are separate for x, y, z data. No special
order of (x,y,z) triples is supposed. Sizes, distances, coordinates
are in same units.
- grid boundaries (xmin,...,ymax) and (square) cell size
- grid building method: 'Good' (default) or 'Best' (not implemented)
- acceptable error level - absolute or relative. Default is 0.0 (but it
is not an 'interpolation')
- trimming distance: throw out (i.e. replace by non-values) all the values
with distances from sources larger than trimdistance, starting from grid
boundaries (i.e. internal nodes may be untouched)
- unvalue, use for output, to mark nodes without values (default: 12345678.9)
- a few others ?
Registered functions (to call from python):
filestatistics(xyzfile=filename)
learn file statistics, on x,y,z.
Return tuple (nvals,xmin,xmax,ymin,ymax,zmin,zmax,zavrg,zstnd) of
statistics: nvals = number of values, *min = minimum, *max = maximum,
*avrg = average, *stnd = standard, where * is x/y/z.
Raise IOError -- could not open file.
fromfile(
xyzfile=filename, // input file of lines (x,y,z)
nx=xnodes, ny=ynodes, // grid sizes in nodes
step=cellsize, // cell sizes
xmin=minX, ymin=minY, // left bottom, x - east, y - north
method='Good', // or 'Best' (not implemented yet)
trimming=trimdistance, // distance to trim, ignored if trimming < step
unvalue=non_value, // caller unvalue, ignored if no trimming
abserror=AbsError, // acceptable error if > 0
relerror=RelError, // the same, as part of standard (if abserror==0)
// relerror ignored if abserror > 0.0
)
Return grid as list, rows from bottom, columns from left
Raise ValueError/IOError for errors with file/memory
fromxyz(
xdata=x, ydata=y, zdata=z, // lists of input data (of same length)
nx=xnodes, ny=ynodes, // grid sizes in nodes
step=cellsize, // cell sizes
xmin=minX, ymin=Ymin, // left bottom, x - east, y - north
# Optional parameters:
method='Good', // or 'Best' (not implemented)
trimming=trimdistance, // distance to trim, ignored if trimming < step
unvalue=non_value, // caller unvalue, ignored if no trimming
abserror=AbsError, // acceptable error if > 0
relerror=RelError, // the same, as part of standard (if abserror==0)
// relerror ignored if abserror > 0.0
)
Return grid as list, rows from bottom, columns from left
Raise ValueError/IOError for errors with values/memory
tofile(
outfile=filename, // output file name
griddata=xyz, // list as returned by fromfile() or fromxyz()
nx=xnodex, ny=ynodes, // grid sizes in nodes
filetype=grid_type, // 'xyz' or 'gxf' or 'grd' etc (not implemented)
# Optional parameters:
step=cellsize, // cell sizes, default: 1.0
xmin=minX, ymin=Ymin, // left bottom, x - east, y - north
// default: xmin=ymin=0.0
unvalue=non_value, // caller unvalue, default: 12345678.9
// grid nodes with unvalue will not be put to 'xyz' file
)
Return 0 for Ok
Raise ValueError/IOError for errors with file/memory
Method - sizes/memory/speed:
minimal grid size is 9 nodes (in X and Y), maximal size is about 10000
(in this case it will take about 300 MB of memory, for data only).
Output data take 8*ncol*nrow bytes - it is minimum (for doubles in nodes).
Maximum is about 30*ncol*nrow bytes - during the building.
Speed is about 100000 nodes/sec (1.6 GHz, 1 GB RAM), there is also a weak
dependence on input data volume, precision, etc. The most important
parameter for speed is trimming (currently).
Tests:
1. this text was successfully compiled as C (not C++) with MS VC++ 6.0,
MinGW Dev.Studio 2.05 and gcc-4 (ubuntu).
2. python test program is BuildGrid.py
run it to see numerical/graphical results for two examples
*/
#include "Python.h"
#include <stdio.h> /* FILE, fgets(), printf() */
#include <math.h> /* fabs() */
#include <string.h> /* memset() */
#define NoValue 32767 /* unreachable distance for short */
#define Margin 7 /* not used (so far) */
#define MinGridSize 9 /* minimal grid size in nodes */
#define MaxGridSize (NoValue/3-Margin) /* maximal grid size in nodes */
#define MinStep 0.001 /* minimal grid cell size */
/* unvalue should be: unvalue != 1.01 * unvalue, for floats and doubles */
#define UnValue 12345678.9 /* double and float */
#define isUnvalue(v) (fabs((v)-UnValue) < 0.01)
#define TopLimitValue (1.2E34)
#define LowLimitValue (-1.2E34)
#define TextLen 256 /* text lines */
/* Grid sizes are limited by about 9*3**ZIO nodes in X & Y */
#define ZIO 12 /* Number of levels */
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define MAX(a,b) ((a) > (b) ? (a) : (b))
//=====================================================
//=== input XYZ file statistics =======================
//=====================================================
typedef struct _File_Statistics_
{
int nvals;
double xmin,xmax,ymin,ymax,zmin,zmax,zavrg,zstnd;
} FileStatistics;
static void
zerostatistics(FileStatistics * fs)
{
fs->nvals = 0;
fs->zavrg = fs->zstnd = 0.0;
fs->xmin = fs->ymin = fs->zmin = TopLimitValue;
fs->xmax = fs->ymax = fs->zmax = LowLimitValue;
}
static void
standard(int nvals, double * avrg, double * stnd)
{
if(nvals > 0) {
*avrg /= nvals;
*stnd = *stnd/nvals - (*avrg) * (*avrg);
if(*stnd > 0.0) *stnd = sqrt(*stnd);
else *stnd = 0.0;
} //else *stnd = 0.0;
}
static int
getfilestatistics(char * xyzfile, FileStatistics * fs)
{
char text[TextLen];
double x,y,z;
int n;
FILE *fi = fopen(xyzfile,"rt");
if(!fi) return -1;
while(fgets(text,TextLen,fi)) { // until EOF
n = sscanf(text,"%lf %lf %lf",&x,&y,&z);
if(n != 3) continue;
++fs->nvals;
fs->zavrg += z;
fs->zstnd += z*z;
fs->zmin = MIN(fs->zmin,z);
fs->zmax = MAX(fs->zmax,z);
fs->ymin = MIN(fs->ymin,y);
fs->ymax = MAX(fs->ymax,y);
fs->xmin = MIN(fs->xmin,x);
fs->xmax = MAX(fs->xmax,x);
}
fclose(fi);
standard(fs->nvals, &fs->zavrg, &fs->zstnd);
return 0;
}
//--- Registered function ---------------------------
//--- get input XYZ file statistics -----------------
//---------------------------------------------------
static PyObject *
filestatistics(PyObject * self, PyObject * args, PyObject *kwds)
{
int rv;
FileStatistics fs;
char *xyzfile;
if(!PyArg_ParseTuple(args, "s", &xyzfile)) {
PyErr_SetString(PyExc_IOError,"Filename is a must");
return NULL;
}
zerostatistics(&fs);
rv = getfilestatistics(xyzfile, &fs);
if(rv < 0) {
PyErr_SetString(PyExc_IOError,"No such file");
return NULL;
}
return Py_BuildValue("idddddddd",fs.nvals,fs.xmin,fs.xmax,
fs.ymin,fs.ymax,fs.zmin,fs.zmax,fs.zavrg,fs.zstnd);
}
//=====================================================
//=== build grid ======================================
//=====================================================
typedef struct _Grid_Field_ {
int nx, ny; // grid sizes in nodes
double step, // grid mesh is square
xmin,ymin; // coordinates in X/Y directions
double *field; // result
short *index; // input data index, then distance
char method; // 'G'ood or 'B'est (not implemented)
double trimdist; // distance to trim the field
double unvalue; // caller unvalue - use for output only
double maydiff; // user-set tolerance
double *grids[ZIO];
short *indxs[ZIO];
int nxs[ZIO], nys[ZIO];
int indat; // input data points
int indup; // duplicates
int inout; // out of grid
int inunv; // unvals
int ingrd; // number of initial values in grid
} GridField;
/* The only global variable to keep data between calls.
See initialization in initBuild() below */
static GridField gf;
// debug function
static void
debug_write(char *file, int version, double *field, int nx, int ny)
{
//return;
FILE *fo;
int kx,ky;
char filename[80];
sprintf(filename,"outdata_%s_%d.fld",file,version);
fo = fopen(filename,"wt");
if(!fo) { printf("fail write to debug %s\n",filename); return; }
for(ky=ny-1; ky >= 0; --ky) {
for(kx=0; kx < nx; ++kx)
fprintf(fo,"%d %d %f\n",kx,ky,field[nx*ky+kx]);
}
fclose(fo);
}
static void
initGridField() // for initialization and after freeing memory
{
int n;
gf.method = 'G'; // Good
gf.nx = gf.ny = 0;
gf.step = 0.0;
gf.unvalue = UnValue;
gf.trimdist = 0.0; // no trimming
gf.maydiff = 0.0; // exactly
gf.xmin = gf.ymin = TopLimitValue;
gf.indat = gf.inunv = gf.indup = gf.inout = gf.ingrd = 0;
for(n=0; n < ZIO; ++n) {
gf.grids[n] = NULL;
gf.indxs[n] = NULL;
}
gf.index = NULL;
gf.field = NULL;
}
static void
freeGridFieldMemory(int freefield)
{
if(freefield & 1) {
if(gf.field) { free(gf.field); gf.field = NULL; }
}
if(freefield & 2) {
if(gf.index) { free(gf.index); gf.index = NULL; }
}
if(freefield & 4) {
int n;
for(n=1; n < ZIO; ++n) {
if(gf.grids[n]) { free(gf.grids[n]); gf.grids[n] = NULL; }
if(gf.indxs[n]) { free(gf.indxs[n]); gf.indxs[n] = NULL; }
}
}
}
static int
initGridFieldMemory()
{
int k,kx,ky;
freeGridFieldMemory(7);
gf.field = (double *)malloc(gf.nx*gf.ny*sizeof(double));
if(!gf.field) return -1;
gf.index = (short *)malloc(gf.nx*gf.ny*sizeof(short));
if(!gf.index) { freeGridFieldMemory(1); return -1; }
memset((void *)gf.field,0,gf.nx*gf.ny*sizeof(double));
memset((void *)gf.index,0,gf.nx*gf.ny*sizeof(short));
gf.grids[0] = gf.field;
gf.indxs[0] = gf.index;
gf.nxs[0] = gf.nx;
gf.nys[0] = gf.ny;
for(k=1; k < ZIO; ++k) {
kx = gf.nxs[k] = (gf.nxs[k-1]+2)/3;
ky = gf.nys[k] = (gf.nys[k-1]+2)/3;
if(kx < MinGridSize || ky < MinGridSize) break;
gf.grids[k] = (double *)malloc(kx*ky*sizeof(double));
gf.indxs[k] = (short *)malloc(kx*ky*sizeof(short));
if(!gf.grids[k] || !gf.indxs[k]) return -1;
memset((void *)gf.grids[k],0,kx*ky*sizeof(double));
memset((void *)gf.indxs[k],0,kx*ky*sizeof(short));
}
return 0;
}
static int
getInputFileData(char *xyzfile, double * stnd)
{
char text[TextLen];
int n,nn,indxy, xn,yn;
double x,y,z, av,st;
FILE *fi = fopen(xyzfile,"rt");
if(!fi) return -1;
av = st = 0.0;
while(fgets(text,TextLen,fi)) {
n = sscanf(text,"%lf %lf %lf",&x,&y,&z);
if(n < 3) continue; // ignore other lines/errors
++gf.indat; // number of input data points
xn = (int)((x-gf.xmin)/gf.step+0.5);
yn = (int)((y-gf.ymin)/gf.step+0.5);
if(xn < 0 || xn >= gf.nx || yn < 0 || yn >= gf.ny) {
++gf.inout; // out of grid
} else {
++gf.ingrd; // in grid
av += z;
st += z*z;
nn = xn+gf.nx*yn;
indxy = gf.index[nn];
if(indxy > 0) {
z = (z+gf.field[nn]*indxy)/(1+indxy);
++gf.indup; // repeated node
}
gf.field[nn] = z; // field value
gf.index[nn] += 1; // source node
if(gf.index[nn] > NoValue/2) gf.index[nn] /= 2; // just for safety
}
}
fclose(fi);
standard(gf.ingrd,&av,&st);
*stnd = st;
return 0;
}
static void
cleanIndex()
{
int k;
gf.ingrd = 0;
for(k=gf.nx*gf.ny-1; k >= 0; --k) {
if(gf.index[k]) { ++gf.ingrd; gf.index[k] = 3; } // data
//else gf.index[k] = 0; // no data
}
}
static void
zoom_out(double *field1, short *index1, int nx1, int ny1, // src large
double *field2, short *index2, int nx2, int ny2) { // => dst small
int rw[] = { 4,2,1 };
int jx,jy, ix,iy, mx,my,mm, px,py, pp,qq;
double t,w,s;
for(jy=0; jy < ny2; ++jy) { // dst
my = 3*jy+1; // src
if(my >= ny1) continue;
for(jx=0; jx < nx2; ++jx) { // dst
mx = 3*jx+1; // src
if(mx >= nx1) continue;
mm = my*nx1+mx;
if(index1[mm] == 3) {
qq = nx2*jy+jx;
field2[qq] = field1[mm];
index2[qq] = 3;
continue;
}
s = w = 0.0; // average of input data
for(ix=-1; ix <= 1; ++ix) {
px = mx+ix; // src
if(px < 0 || px >= nx1) continue;
for(iy=-1; iy <= 1; ++iy) {
py = my+iy; // src
if(py < 0 || py >= ny1) continue;
pp = nx1*py+px;
if(index1[pp] > 0) {
t = rw[abs(ix)+abs(iy)];
w += t;
s += t * field1[pp];
}
}
}
if(w > 0.0) {
qq = nx2*jy+jx;
field2[qq] = s/w;
index2[qq] = 1; // added data
}
}
}
}
static void
zoom_in(double *grid1, short *indx1, int nx1, int ny1, // src small
double *grid2, short *indx2, int nx2, int ny2) { // => dst large
int jx,jy,mx,my, pp;
for(jx=0; jx < nx1; ++jx) { // from
mx = 3*jx+1; // to
if(mx >= nx2) continue;
for(jy=0; jy < ny1; ++jy) { // from
my = 3*jy+1; // to
if(my >= ny2) continue;
pp = nx2*my+mx;
if(indx2[pp] > 0) continue;
indx2[pp] = 1;
grid2[pp] = grid1[nx1*jy+jx];
}
}
}
static int
fillup1(short *indx, int nx, int ny)
{
int k, n = 0;
for(k=nx*ny-1; k >= 0; --k) if(indx[k] > 0) ++n;
return n;
}
static int
fillup2(double *fgrid, short *indx, int nx, int ny, int inx, int iny, double wmin) {
int rw[] = { 4,2,1 };
int jx,jy,pp,qq,ix,iy,px,py, kk = 0;
double t,w,s;
for(jx=inx; jx < nx; jx+=2) {
for(jy=iny; jy < ny; jy+=2) {
pp = nx*jy+jx;
if(indx[pp] > 0) continue;
s = w = 0.0;
for(ix=-1; ix <= 1; ++ix) {
px = jx+ix;
if(px < 0 || px >= nx) continue;
for(iy=-1; iy <= 1; ++iy) {
py = jy+iy;
if(py < 0 || py >= ny) continue;
qq = nx*py+px;
if(indx[qq] > 0) {
t = rw[abs(ix)+abs(iy)];
w += t;
s += t * fgrid[qq];
}
}
}
if(w > wmin) {
fgrid[pp] = s/w;
indx[pp] = 1; // added node
++kk;
}
}
}
return kk;
}
static void
fillup3(double *fgrid, short *indx, int nx, int ny) {
int kk = 0, kwas;
double wmin = 3.5;
while(kk < nx*ny) {
kwas = kk; // to decrease direction dependence:
kk = fillup1(indx, nx, ny);
kk += fillup2(fgrid, indx, nx, ny, 0, 0, wmin);
kk += fillup2(fgrid, indx, nx, ny, 1, 1, wmin);
kk += fillup2(fgrid, indx, nx, ny, 0, 1, wmin);
kk += fillup2(fgrid, indx, nx, ny, 1, 0, wmin);
if(kk <= kwas) {
if(wmin > 1.0) wmin -= 1.0;
else { // debug: my error
printf("! kk <= kwas && wmin < 1.0\n");
exit(1); // ?
}
}
}
}
static void
buildFast()
{
int k;
for(k=1; k < ZIO; ++k) {
if(gf.nxs[k] < MinGridSize || gf.nys[k] < MinGridSize) break;
memset((void *)gf.indxs[k],0,gf.nxs[k]*gf.nys[k]*sizeof(short));
zoom_out(gf.grids[k-1],gf.indxs[k-1],gf.nxs[k-1],gf.nys[k-1],
gf.grids[k], gf.indxs[k], gf.nxs[k], gf.nys[k]);
}
--k;
fillup3(gf.grids[k],gf.indxs[k],gf.nxs[k],gf.nys[k]);
for( ; k > 0; --k) {
zoom_in(gf.grids[k], gf.indxs[k], gf.nxs[k], gf.nys[k],
gf.grids[k-1],gf.indxs[k-1],gf.nxs[k-1],gf.nys[k-1]);
fillup3(gf.grids[k-1],gf.indxs[k-1],gf.nxs[k-1],gf.nys[k-1]);
}
}
static void
cosmoothxy(double *fgrid, int nx, int ny, double a, double b) {
int jx,jy,jj;
for(jy=0; jy < ny; ++jy) {
for(jx=1; jx < nx; ++jx) {
jj = nx*jy+jx;
fgrid[jj] = a*fgrid[jj]+b*fgrid[jj-1];
//fgrid[jj] -= b*(fgrid[jj]-fgrid[jj-1]); -- slower
}
for(jx=nx-2; jx >= 0; --jx) {
jj = nx*jy+jx;
fgrid[jj] = a*fgrid[jj]+b*fgrid[jj+1];
}
}
for(jx=0; jx < nx; ++jx) {
for(jy=1; jy < ny; ++jy) {
jj = nx*jy+jx;
fgrid[jj] = a*fgrid[jj]+b*fgrid[jj-nx];
}
for(jy=ny-2; jy >= 0; --jy) {
jj = nx*jy+jx;
fgrid[jj] = a*fgrid[jj]+b*fgrid[jj+nx];
}
}
}
static double
factor()
{
double b10 = 0.85, b1000 = 0.96;
double c = (b1000-b10)/(1/10.-1/1000.);
double a = b10+c/10;
return a-c/MIN(gf.nx,gf.ny); // or some average
}
static int
buildGood() {
int k, nn = gf.nx*gf.ny;
double vmin = TopLimitValue, vmax = LowLimitValue;
double bcos, initdiff, curdiff, prevdiff;
double *ogrid, *ofield; // 'o' for output
short *ondex;
ogrid = (double *)malloc(nn*sizeof(double));
if(ogrid) {
ofield = (double *)malloc(nn*sizeof(double));
if(ofield) {
ondex = (short *)malloc(nn*sizeof(short));
if(!ondex) { free(ofield); free(ogrid); return -1; }
} else { free(ogrid); return -1; }
} else return -1;
for(k=0; k < nn; ++k) {
ofield[k] = 0.0;
ondex[k] = gf.index[k];
if(gf.field[k] < vmin) vmin = gf.field[k];
if(gf.field[k] > vmax) vmax = gf.field[k];
}
//debug_write("good_init",0,gf.field,gf.nx,gf.ny);
bcos = factor();
prevdiff = initdiff = vmax-vmin;
while (bcos > 0.00001) {
buildFast(); // gf.field => gf.grids => gf.field
for(k=0; k < nn; ++k) ogrid[k] = gf.field[k];
cosmoothxy(ogrid,gf.nx,gf.ny,1-bcos,bcos); // ogrid => ogrid
vmin = TopLimitValue;
vmax = LowLimitValue;
for(k=0; k < nn; ++k) {
ofield[k] += ogrid[k];
gf.field[k] -= ogrid[k];
if(gf.field[k] < vmin) vmin = gf.field[k];
if(gf.field[k] > vmax) vmax = gf.field[k];
gf.index[k] = ondex[k];
}
curdiff = vmax-vmin;
if(curdiff <= gf.maydiff) break;
if(curdiff > 0.999*prevdiff && bcos < 0.001) break; // hard conditions ?
prevdiff = curdiff;
bcos *= sqrt(bcos);
}
for(k=0; k < nn; ++k) // copy to output
gf.field[k] = ofield[k];
free(ofield);
free(ogrid);
free(ondex);
return 0;
}
static int
buildBest() {
// In comparison with buildGood() above this function will temporary
// use enlarged grid (see margin) with smaller cells (lesser step).
// Also, will apply more accurate using error limits (try to reach
// in each datanode).
return 0;
}
static void
fillDistRadius()
{
int nx = gf.nx, ny = gf.ny;
short *dist = gf.index;
int kx,ky,kk,k,d;
for(ky=0; ky < ny; ++ky) {
for(kx=0; kx < nx; ++kx) {
kk = nx*ky+kx;
if(dist[kk]) continue; // only from source nodes
for(d=2,k=1; kx+k < nx; ++k,d+=2) { // E
dist[kk+k] = MIN(dist[kk+k],d); }
for(d=2,k=-1; kx+k >= 0; --k,d+=2) { // W
dist[kk+k] = MIN(dist[kk+k],d); }
for(d=2,k=1; ky+k < ny; ++k,d+=2) { // N
dist[kk+k*nx] = MIN(dist[kk+k*nx],d); }
for(d=2,k=-1; ky+k >= 0; --k,d+=2) { // S
dist[kk+k*nx] = MIN(dist[kk+k*nx],d); }
for(d=3,k=1; kk+k < nx && ky+k < ny; ++k,d+=3) { // NE
dist[kk+k*(nx+1)] = MIN(dist[kk+k*(nx+1)],d); }
for(d=3,k=1; kx-k >= 0 && ky+k < ny; ++k,d+=3) { // NW
dist[kk+k*(nx-1)] = MIN(dist[kk+k*(nx-1)],d); }
for(d=3,k=1; kx+k < nx && ky-k >= 0; ++k,d+=3) { // SE
dist[kk+k*(-nx+1)] = MIN(dist[kk+k*(-nx+1)],d); }
for(d=3,k=1; kx-k >= 0 && ky-k >= 0; ++k,d+=3) { // SW
dist[kk+k*(-nx-1)] = MIN(dist[kk+k*(-nx-1)],d); }
}
}
}
static void
fillDistNodes()
{
int nx = gf.nx, ny = gf.ny;
short *dist = gf.index;
int kx,ky,kk, cdist, cdist2, cdist3, ndist;
for(ndist=2; ndist < NoValue; ++ndist) {
int news = 0;
for(ky=0; ky < ny; ++ky) {
for(kx=0; kx < nx; ++kx) {
kk = kx+nx*ky;
if(dist[kk] < ndist) continue;
cdist = dist[kk];
cdist2 = cdist+2; cdist3 = cdist+3;
if(0 < kx) {
if(dist[kk-1] > cdist2) { dist[kk-1] = cdist2; ++news; }
if(ky > 0 && dist[kk-1-nx] > cdist3) {
dist[kk-1-nx] = cdist3; ++news; }
if(ky < ny-1 && dist[kk-1+nx] > cdist3) {
dist[kk-1+nx] = cdist3; ++news; }
}
if(kx+1 < nx) {
if(dist[kk+1] > cdist2) { dist[kk+1] = cdist2; ++news; }
if(ky > 0 && dist[kk+1-nx] > cdist3) {
dist[kk+1-nx] = cdist3; ++news; }
if(ky < ny-1 && dist[kk+1+nx] > cdist3) {
dist[kk+1+nx] = cdist3; ++news; }
}
if(ky > 0 && dist[kk-nx] > cdist2) {
dist[kk-nx] = cdist2; ++news; }
if(ky < ny-1 && dist[kk+nx] > cdist2) {
dist[kk+nx] = cdist2; ++news; }
}
}
if(!news) break;
}
}
static void
trimDistances()
{
int nx = gf.nx, ny = gf.ny;
short *dist = gf.index;
int kx,ky,kk, news=0;
int xdist = (int)(2.001*gf.trimdist/gf.step+0.5);
int nearn[8] = { 1, 1+nx, nx, nx-1, -1, -1-nx, -nx, 1-nx };
int n, nears = 8; // == sizeof(nearn)/sizeof(int)
for(kx=0; kx < nx; ++kx) { // most exterior layer
kk = kx;
if(dist[kk] >= xdist) { dist[kk] = NoValue; ++news; }
kk = nx*(ny-1)+kx;
if(dist[kk] >= xdist) { dist[kk] = NoValue; ++news; }
}
for(ky=0; ky < ny; ++ky) {
kk = nx*ky;
if(dist[kk] >= xdist) { dist[kk] = NoValue; ++news; }
kk = nx*ky+(nx-1);
if(dist[kk] >= xdist) { dist[kk] = NoValue; ++news; }
}
while(news) {
news = 0;
for(ky=1; ky < ny-1; ++ky) {
for(kx=1; kx < nx-1; ++kx) {
kk = nx*ky+kx;
if(dist[kk] < xdist || dist[kk] == NoValue) continue;
for(n=0; n < nears; ++n) {
if(dist[kk+nearn[n]] == NoValue) {
dist[kk] = NoValue; ++news; break;
}
}
}
}
}
}
static void
useDistances()
{
int n;
short *dist = gf.index;
for(n=gf.nx*gf.ny-1; n >= 0; --n) {
if(gf.index[n] > 0) gf.index[n] = 0;
else gf.index[n] = NoValue;
}
fillDistRadius();
fillDistNodes();
trimDistances();
for(n = gf.nx*gf.ny-1; n >= 0; --n) {
if(dist[n]==NoValue) {
gf.field[n] = UnValue;
}
}
}
static int
goodgeometry()
{
if(gf.nx < MinGridSize || gf.ny < MinGridSize) {
PyErr_SetString(PyExc_ValueError,"Grid size in nodes too small");
return 0;
}
if(gf.nx > MaxGridSize || gf.ny > MaxGridSize) {
PyErr_SetString(PyExc_ValueError,"Grid size in nodes too large");
return 0;
}
if(gf.step <= MinStep) {
PyErr_SetString(PyExc_ValueError,"Cell size too small");
return 0;
}
return 1;
}
static PyObject *
gridresult()
{
int r,c, rv;
PyObject *done = PyList_New(gf.nx*gf.ny);
if(!done) {
PyErr_SetString(PyExc_ValueError,"Failure create output list");
return done;
}
for(r=0; r < gf.ny; ++r) {
for(c=0; c < gf.nx; ++c) {
double v = gf.field[r*gf.nx+c];
if(isUnvalue(v)) v = gf.unvalue; // caller unvalue
{
PyObject * value = PyFloat_FromDouble(v);
PyList_SetItem(done,r*gf.nx+c,value);
//debug:
//PyObject * value = PyFloat_FromDouble(v);
//if(!value) printf("PyFloat_FromDouble %d %d %f\n",r,c,v);
//rv = PyList_SetItem(done,r*gf.nx+c,value);
//if(rv) { printf("list setitem %d\n",r); }
}
}
}
freeGridFieldMemory(7); // free gf.field
return done;
}
//--- (Registered function.) ---------------------------
static PyObject *
fromfile(PyObject * self, PyObject * args, PyObject *kwds)
{
static char *kwlist[] = {
"xyzfile", // input file, x,y,z always
"nx","ny", // grid sizes in nodes
"step", // cell sizes
"xmin","ymin", // low bottom
"unvalue", // caller unvalue
"method", // good/best
"trimming", // distance to trim grid
"abserror", // acceptable error, given
"relerror", // the same, part of standard (if abserror==0)
NULL
};
int rv;
double st; // for tolerance
char *xyzfile, *method="";
double abserr=0.0, relerr=0.0;
PyObject *grid;
freeGridFieldMemory(7); // for the case of a new call
initGridField(); // set default values
if(!PyArg_ParseTupleAndKeywords(args, kwds,
"siiddd|dsddd", kwlist,
&xyzfile, &gf.nx, &gf.ny, &gf.step, &gf.xmin, &gf.ymin,
&gf.unvalue, &method, &gf.trimdist, &abserr, &relerr)) {
return NULL;
}
// Check main input parameters:
if(!goodgeometry()) return NULL;
if(method[0] == 'B') gf.method = 'B'; // Best/Good
else gf.method = 'G';
rv = initGridFieldMemory(); // also initialize
if(rv) { PyErr_NoMemory(); goto badexit; }
// read input XYZ data, also put to dist grid
rv = getInputFileData(xyzfile,&st);
if(rv < 0) {
PyErr_SetString(PyExc_IOError,"Could not open input file");
goto badexit;
}
if(gf.ingrd < 1) {
PyErr_SetString(PyExc_IOError,"No input data");
goto badexit;
}
if(abserr > 0.0) gf.maydiff = MIN(abserr,st/2);
else gf.maydiff = MIN(relerr*st,st/2);
cleanIndex(); // mark nodes 0/3; set gf.innodes
rv = buildGood();
if(rv) { PyErr_NoMemory(); goto badexit; }
if(gf.method=='B')
buildBest(); // not implemented
freeGridFieldMemory(4); // free gf.aux grids
// distances
if(gf.trimdist >= gf.step)
useDistances();
freeGridFieldMemory(2); // free gf.index
// Create resulting list
grid = gridresult();
if(grid)
return Py_BuildValue("O",grid);
badexit:
freeGridFieldMemory(7);
return NULL;
}
static void
getInputXYZdata(PyObject * xfast, PyObject * yfast, PyObject * zfast, double * stnd)
{
int k, nn, indxy, xn,yn, nvals = PyObject_Length(xfast);
double x,y,z, av,st;
av = st = 0.0;
for(k=0; k < nvals; ++k) {
PyObject *xf = PyNumber_Float(PySequence_GetItem(xfast,k));
PyObject *yf = PyNumber_Float(PySequence_GetItem(yfast,k));
PyObject *zf = PyNumber_Float(PySequence_GetItem(zfast,k));
if(!xf || !yf || !zf) {
//PyErr_SetString(PyExc_ValueError,"Not a Float Value in xdata/ydata/zdata");
//return;
continue;
}
x = PyFloat_AsDouble(xf);
y = PyFloat_AsDouble(yf);
z = PyFloat_AsDouble(zf);
++gf.indat; // number of input data points
xn = (int)((x-gf.xmin)/gf.step+0.5);
yn = (int)((y-gf.ymin)/gf.step+0.5);
if(xn < 0 || xn >= gf.nx || yn < 0 || yn >= gf.ny) {
++gf.inout; // out of grid
} else {
++gf.ingrd;
av += z;
st += z*z;
nn = xn+gf.nx*yn;
indxy = gf.index[nn];
if(indxy > 0) {
z = (z+gf.field[nn]*indxy)/(1+indxy);
++gf.indup; // repeated node
}
gf.field[nn] = z; // field value
gf.index[nn] += 1; // source node
if(gf.index[nn] > 16300) gf.index[nn] /= 2; // just for safety
}
}
standard(gf.ingrd,&av,&st);
*stnd = st;
}
//--- (Registered function.) ---------------------------
static PyObject *
fromxyz(PyObject * self, PyObject * args, PyObject *kwds)
{
static char *kwlist[] = {
"xdata","ydata","zdata", // input lists/tuples/... x,y,z
// other parameters are the same as in fromfile():
"nx","ny", // grid sizes in nodes
"step", // cell sizes
"xmin","ymin", // low bottom
"unvalue", // caller unvalue
"method", // good/best
"trimming", // distance to trim grid
"abserror", // acceptable error, given
"relerror", // the same, part of standard (if abserror==0)
NULL
};
int rv;
double st; // for tolerance
char *method="";
PyObject *xdata, *ydata, *zdata, *xfast, *yfast, *zfast;
PyObject *grid;
double abserr=0.0, relerr=0.0;
freeGridFieldMemory(7); // for the case of a new call
initGridField(); // set default values
if(!PyArg_ParseTupleAndKeywords(args, kwds,
"OOOiiddd|dsddd", kwlist,
&xdata, &ydata, &zdata, &gf.nx, &gf.ny, &gf.step, &gf.xmin, &gf.ymin,
&gf.unvalue, &method, &gf.trimdist, &abserr, &relerr)) {
return NULL;
}
// Check main input parameters:
if(!goodgeometry()) return NULL;
if(method[0] == 'B') gf.method = 'B'; // Best/Good
else gf.method = 'G';
xfast = PySequence_Fast(xdata,"xdata must be sequence"); // TypeError
yfast = PySequence_Fast(ydata,"ydata must be sequence"); // TypeError
zfast = PySequence_Fast(zdata,"zdata must be sequence"); // TypeError
if(!xfast || !yfast || !zfast) return NULL;
if(PyObject_Length(xfast) != PyObject_Length(yfast) ||
PyObject_Length(xfast) != PyObject_Length(zfast)) {
PyErr_SetString(PyExc_ValueError,"x/y/z data of different sizes");
return NULL;
}
rv = initGridFieldMemory(); // also initialize
if(rv) { PyErr_NoMemory(); goto badexit; }
// read input XYZ data, also put to dist grid
getInputXYZdata(xfast,yfast,zfast,&st);
if(gf.ingrd < 1) {
PyErr_SetString(PyExc_IOError,"No input data");
goto badexit;
}
if(abserr > 0.0) gf.maydiff = MIN(abserr,st/2);
else gf.maydiff = MIN(relerr*st,st/2);
cleanIndex(); // mark nodes 0/3; set gf.innodes
rv = buildGood();
if(rv) { PyErr_NoMemory(); goto badexit; }
if(gf.method=='B')
buildBest(); // not implemented
freeGridFieldMemory(4); // free gf.aux grids
// distances
if(gf.trimdist >= gf.step)
useDistances();
freeGridFieldMemory(2); // free gf.index
// Create resulting list
grid = gridresult();
if(grid)
return Py_BuildValue("O",grid);
badexit:
freeGridFieldMemory(7);
return NULL;
}
static int
makeGXF(char *filename, PyObject *fast, int nx, int ny,
double xmin, double ymin, double step, double unvalue)
{
return 0;
}
static int
makeGRD(char *filename, PyObject *fast, int nx, int ny,
double xmin, double ymin, double step, double unvalue)
{
return 0;
}
static int
makeXYZ(char *filename, PyObject *fast, int nx, int ny,
double xmin, double ymin, double step, double unvalue,
char *header, char *format)
{
int rv, kx,ky;
double uneps = 0.01*fabs(unvalue); // hope: unvalue != unvalue+uneps
char xyzformat[50];
FILE *fo = fopen(filename,"wt");
if(!fo) {
PyErr_SetString(PyExc_ValueError,"failure open output file");
return -1;
}
if(strlen(header) > 0) {
rv = fprintf(fo,"%s\n",header);
if(rv < 1) { fclose(fo); return -2; }
}
if(strlen(format) > 8) strcpy(xyzformat,format); // at least "%f %f %f\n"
else strcpy(xyzformat,"%.2f %.2f %.3f\n");
for(ky=0; ky < ny; ++ky) {
for(kx=0; kx < nx; ++kx) {
PyObject *value = PySequence_Fast_GET_ITEM(fast,ky*nx+kx);
double v = PyFloat_AsDouble(value);
if(fabs(v-unvalue) <= uneps) continue;
rv = fprintf(fo,xyzformat,xmin+kx*step,ymin+ky*step,v);
if(rv < 1) { fclose(fo); return -2; }
}
}
fclose(fo);
return 0;
}
//--- (Registered function.) ---------------------------
static PyObject *
tofile(PyObject * self, PyObject * args, PyObject *kwds)
{
static char *kwlist[] = {
"filename", // output file name
"gridtype", // output grid type: "xyz"/"gxf"/...
"griddata", // list or similar of values in nodes
"nx","ny", // grid sizes in nodes
"step", // cell sizes
"xmin","ymin", // low bottom
"unvalue", // caller unvalue to skip in output
"header", // text string
"format", // output line format
NULL
};
char *filename, *gridtype, *header="", *format="";
PyObject *grid, *fast;
int nx=0, ny=0, rv;
double step=1.0, xmin=0.0, ymin=0.0, unvalue=UnValue;
if(!PyArg_ParseTupleAndKeywords(args, kwds,
"ssOii|ddddss", kwlist,
&filename, &gridtype, &grid, &nx, &ny,
&step, &xmin, &ymin, &unvalue, &header, &format)) {
return NULL;
}
// Check main input parameters:
if(nx < 1 || ny < 1) {
PyErr_SetString(PyExc_ValueError,"No grid size");
return NULL;
}
fast = PySequence_Fast(grid,"griddata must be sequence"); // TypeError
if(!fast) return NULL;
if(!strncmp(gridtype,"gxf",3)) {
// I mean:
// http://www.geosoft.com/resources/technotes/pdfs/gxfr3d9_1.pdf
// though there are others, e.g.
// http://www.euronav.co.uk/Downloads/GXF%20spec/GXF_Spec_123.pdf
rv = makeGXF(filename,fast,nx,ny,xmin,ymin,step,unvalue);
} else
if(!strncmp(gridtype,"grd",3)) {
// There are a lot of them. I mean one or two of Surfer's:
// http://www.goldensoftware.com/
rv = makeGRD(filename,fast,nx,ny,xmin,ymin,step,unvalue);
} else
if(!strncmp(gridtype,"xyz",3)) {
// Just text lines with triples: x y z
rv = makeXYZ(filename,fast,nx,ny,xmin,ymin,step,unvalue,header,format);
} else {
// Another formats ?
PyErr_SetString(PyExc_ValueError,"unsupported output grid type");
return NULL;
}
return Py_BuildValue("i",rv);
}
//--- registered methods -------------------------------------
static PyMethodDef buildmethods[] = {
{ "fromfile", (PyCFunction)fromfile,
METH_VARARGS | METH_KEYWORDS, " build field from xyz file" },
{ "fromxyz", (PyCFunction)fromxyz,
METH_VARARGS | METH_KEYWORDS, " build field from xyz data" },
//{ "frominfo", (PyCFunction)fromafter,
// METH_VARARGS | METH_KEYWORDS, " info after building" },
{ "tofile", (PyCFunction)tofile,
METH_VARARGS | METH_KEYWORDS, " write field to xyz/gxf/... file" },
{ "filestatistics", (PyCFunction)filestatistics,
METH_VARARGS | METH_KEYWORDS, " find file data limits" },
{ NULL, NULL, 0, NULL }
};
//--- registration --------------------------------------------
PyMODINIT_FUNC
initbuild_grid(void) {
Py_InitModule("build_grid", buildmethods);
initGridField(); // initialize global 'gf'
}
|