1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
|
#! /usr/bin/env python
# Last Change: Fri Dec 15 10:00 PM 2006 J
from numpy.testing import *
from numpy.random import randn, seed
from numpy import correlate, array, concatenate, require, corrcoef
from numpy.fft import fft, ifft
from numpy.ctypeslib import ndpointer, load_library
from ctypes import c_uint
set_package_path()
from cdavid.autocorr import _raw_autocorr_1d, _raw_autocorr_1d_noncontiguous
from cdavid.autocorr import autocorr_oneside_nofft as autocorr
from cdavid.autocorr import autocorr_fft , nextpow2
from cdavid.autocorr import _autocorr_oneside_nofft_py as autocorr_py
restore_path()
import numpy
# number of decimals to check
nd = 20
# minimum number of correct decimals required
md = 12
a = array([1, 2, 3.])
b = a + 3
x = concatenate((a, b)).reshape(2, 3)
# float and double C order
xc = require(x, dtype = numpy.float64, requirements = 'C')
xcf = require(x, dtype = numpy.float32, requirements = 'C')
xc1 = xc[0]
xcf1 = xcf[0]
# float and double F order
xf = require(x, dtype = numpy.float64, requirements = 'FORTRAN')
xff = require(x, dtype = numpy.float32, requirements = 'FORTRAN')
xf1 = xf[0]
xff1 = xff[0]
# This class tests the C functions directly. This is more a debugging tool
# that a test case, as the tested functions are not part of the public API
class test_ctype_1d(NumpyTestCase):
def check_contiguous_double(self):
# double test
xt = xc1
yt = _raw_autocorr_1d(xt, xt.size - 1)
yr = correlate(xt, xt, mode = 'full')
yr = yr[xt.size-1:]
assert_array_equal(yt, yr)
def check_contiguous_float(self):
# float test
xt = xcf1
yt = _raw_autocorr_1d(xt, xt.size - 1)
yr = correlate(xt, xt, mode = 'full')
yr = yr[xt.size-1:]
assert_array_equal(yt, yr)
def check_non_contiguous_double(self):
# double test
xt = xf1
yt = _raw_autocorr_1d_noncontiguous(xt, xt.size - 1)
yr = correlate(xt, xt, mode = 'full')
yr = yr[xt.size-1:]
assert_array_equal(yt, yr)
def check_non_contiguous_float(self):
# float test
xt = xff1
yt = _raw_autocorr_1d_noncontiguous(xt, xt.size - 1)
yr = correlate(xt, xt, mode = 'full')
yr = yr[xt.size-1:]
assert_array_equal(yt, yr)
# Test autocorrelation for rank 1 arrays
class test_autocorr_1d(NumpyTestCase):
def check_contiguous_double(self):
# double test
xt = xc1
yt = autocorr(xt, xt.size - 1)
yr = correlate(xt, xt, mode = 'full')
yr = yr[xt.size-1:]
assert_array_equal(yt, yr)
def check_contiguous_float(self):
# float test
xt = xcf1
yt = autocorr(xt, xt.size - 1)
yr = correlate(xt, xt, mode = 'full')
yr = yr[xt.size-1:]
assert_array_equal(yt, yr)
def check_non_contiguous_double(self):
# double test
xt = xf1
yt = autocorr(xt, xt.size - 1)
yr = correlate(xt, xt, mode = 'full')
yr = yr[xt.size-1:]
assert_array_equal(yt, yr)
def check_non_contiguous_float(self):
# float test
xt = xff1
yt = autocorr(xt, xt.size - 1)
yr = correlate(xt, xt, mode = 'full')
yr = yr[xt.size-1:]
assert_array_equal(yt, yr)
# This class is a pure python implementation of autocorrelation
# with rank 2 arrays. This will be used in the above test cases;
# this function implements the expected behaviour of the public
# autocorr function.
class test_autocorr_py(NumpyTestCase):
def check_full(self):
xt = xc
axis = -1
lag = xt.shape[axis] - 1
yt = autocorr_py(xt, lag, axis = axis)
yr = yt.copy()
for i in range(xt.shape[(axis +1) % 2]):
tmp = correlate(xt[i], xt[i], 'full')
center = xt[i].size - 1
assert_array_equal(tmp[center:center+1+lag], yt[i])
xt = xc
axis = 0
lag = xt.shape[axis] - 1
yt = autocorr_py(xt, lag, axis = axis)
yr = yt.copy()
for i in range(xt.shape[(axis +1) % 2]):
tmp = correlate(xt[:, i], xt[:, i], 'full')
center = xt[:,i].size - 1
assert_array_equal(tmp[center:center+1+lag], yt[:, i])
def check_partial(self):
xt = xc
axis = -1
lag = 1
yt = autocorr_py(xt, lag, axis = axis)
yr = yt.copy()
for i in range(xt.shape[(axis +1) % 2]):
tmp = correlate(xt[i], xt[i], 'full')
center = xt[i].size - 1
assert_array_equal(tmp[center:center+1+lag], yt[i])
xt = xc
axis = 0
lag = 1
yt = autocorr_py(xt, lag, axis = axis)
yr = yt.copy()
for i in range(xt.shape[(axis +1) % 2]):
tmp = correlate(xt[:, i], xt[:, i], 'full')
center = xt[:,i].size - 1
assert_array_equal(tmp[center:center+1+lag], yt[:, i])
# Test autocorrelation for rank 2 arrays
class test_autocorr_2d(NumpyTestCase):
def check_double_full(self):
# C, axis 1 test
xt = xc
axis = -1
lag = xt.shape[axis] - 1
yt = autocorr(xt, lag, axis = axis)
yr = autocorr_py(xt, lag, axis = axis)
assert_array_equal(yt, yr)
# C, axis 0 test
xt = xc
axis = 0
lag = xt.shape[axis] - 1
yt = autocorr(xt, lag, axis = axis)
yr = autocorr_py(xt, lag, axis = axis)
assert_array_equal(yt, yr)
# F, axis 0 test
xt = xf
axis = 0
lag = xt.shape[axis] - 1
yt = autocorr(xt, lag, axis = axis)
yr = autocorr_py(xt, lag, axis = axis)
assert_array_equal(yt, yr)
# F, axis 1 test
xt = xf
axis = -1
lag = xt.shape[axis] - 1
yt = autocorr(xt, lag, axis = axis)
yr = autocorr_py(xt, lag, axis = axis)
assert_array_equal(yt, yr)
def check_float(self):
# C, axis 1 test
xt = xcf
axis = -1
lag = xt.shape[axis] - 1
yt = autocorr(xt, lag, axis = axis)
yr = autocorr_py(xt, lag, axis = axis)
assert_array_equal(yt, yr)
# C, axis 0 test
xt = xcf
axis = 0
lag = xt.shape[axis] - 1
yt = autocorr(xt, lag, axis = axis)
yr = autocorr_py(xt, lag, axis = axis)
assert_array_equal(yt, yr)
# F, axis 0 test
xt = xff
axis = 0
lag = xt.shape[axis] - 1
yt = autocorr(xt, lag, axis = axis)
yr = autocorr_py(xt, lag, axis = axis)
assert_array_equal(yt, yr)
# F, axis 1 test
xt = xff
axis = -1
lag = xt.shape[axis] - 1
yt = autocorr(xt, lag, axis = axis)
yr = autocorr_py(xt, lag, axis = axis)
assert_array_equal(yt, yr)
def check_double_partial(self):
# C, axis 1 test
xt = xc
axis = -1
lag = 1
yt = autocorr(xt, lag, axis = axis)
yr = autocorr_py(xt, lag, axis = axis)
assert_array_equal(yt, yr)
# C, axis 0 test
xt = xc
axis = 0
lag = 0
yt = autocorr(xt, lag, axis = axis)
yr = autocorr_py(xt, lag, axis = axis)
assert_array_equal(yt, yr)
# F, axis 0 test
xt = xf
axis = 1
lag = xt.shape[axis] - 1
yt = autocorr(xt, lag, axis = axis)
yr = autocorr_py(xt, lag, axis = axis)
assert_array_equal(yt, yr)
# F, axis 1 test
xt = xf
axis = -1
lag = 1
yt = autocorr(xt, lag, axis = axis)
yr = autocorr_py(xt, lag, axis = axis)
assert_array_equal(yt, yr)
class test_autocorr_fft(NumpyTestCase):
n = 5
d = 3
def check_nextpow2(self):
assert(nextpow2(255) == 8)
assert(nextpow2(256) == 8)
assert(nextpow2(257) == 9)
def check_r1r(self):
"""real case, rank 1"""
a = randn(self.n)
aref = correlate(a, a, mode = 'full')
atest = autocorr_fft(a)
assert_array_almost_equal(atest, aref, decimal = md)
assert atest.dtype == a.dtype
def check_r1c(self):
"""complex case, rank 1"""
a = randn(self.n) + 1.0j * randn(self.n)
atest = autocorr_fft(a)
aref = numpy.sum(a * numpy.conj(a))
assert_array_almost_equal(atest[self.n - 1], aref, decimal = md)
assert atest.dtype == a.dtype
def check_r2c(self):
"""complex case, rank 2"""
pass
def check_r2r(self):
"""real case, rank 2"""
# axis 0
a = randn(self.n, self.d)
axis = 0
c = [correlate(a[:, i], a[:, i], mode = 'full') for i in range(self.d)]
aref = array(c).T
atest = autocorr_fft(a, axis = axis)
assert_array_almost_equal(atest, aref, decimal = md)
# axis 1
a = randn(self.n, self.d)
axis = 1
c = [correlate(a[i], a[i], mode = 'full') for i in range(self.n)]
aref = array(c)
atest = autocorr_fft(a, axis = axis)
assert_array_almost_equal(atest, aref, decimal = md)
if __name__ == "__main__":
NumpyTest().run()
#class test_autocorr_2d(NumpyTestCase):
# def check_double(self):
# # C, axis 1 test
# xt = xc
# axis = -1
# lag = xt.shape[axis] - 1
# yt = autocorr(xt, lag, axis = axis)
#
# yr = yt.copy()
# for i in range(xt.shape[(axis +1) % 2]):
# tmp = correlate(xt[i], xt[i], 'full')
# assert_array_equal(tmp[lag:], yt[i])
#
# # C, axis 0 test
# xt = xc
# axis = 0
# lag = xt.shape[axis] - 1
# yt = autocorr(xt, lag, axis = axis)
#
# yr = yt.copy()
# for i in range(xt.shape[(axis +1) % 2]):
# tmp = correlate(xt[:, i], xt[:, i], 'full')
# assert_array_equal(tmp[lag:], yt[:, i])
#
# # F, axis 0 test
# xt = xf
# axis = 0
# lag = xt.shape[axis] - 1
# yt = autocorr(xt, lag, axis = axis)
#
# yr = yt.copy()
# for i in range(xt.shape[(axis +1) % 2]):
# tmp = correlate(xt[:, i], xt[:, i], 'full')
# assert_array_equal(tmp[lag:], yt[:, i])
#
# # F, axis 1 test
# xt = xf
# axis = -1
# lag = xt.shape[axis] - 1
# yt = autocorr(xt, lag, axis = axis)
#
# yr = yt.copy()
# for i in range(xt.shape[(axis +1) % 2]):
# tmp = correlate(xt[i], xt[i], 'full')
# assert_array_equal(tmp[lag:], yt[i])
#
# def check_float(self):
# # C, axis 1 test
# xt = xcf
# axis = -1
# lag = xt.shape[axis] - 1
# yt = autocorr(xt, lag, axis = axis)
#
# yr = yt.copy()
# for i in range(xt.shape[(axis +1) % 2]):
# tmp = correlate(xt[i], xt[i], 'full')
# assert_array_equal(tmp[lag:], yt[i])
#
# # C, axis 0 test
# xt = xcf
# axis = 0
# lag = xt.shape[axis] - 1
# yt = autocorr(xt, lag, axis = axis)
#
# yr = yt.copy()
# for i in range(xt.shape[(axis +1) % 2]):
# tmp = correlate(xt[:, i], xt[:, i], 'full')
# assert_array_equal(tmp[lag:], yt[:, i])
#
# # F, axis 0 test
# xt = xff
# axis = 0
# lag = xt.shape[axis] - 1
# yt = autocorr(xt, lag, axis = axis)
#
# yr = yt.copy()
# for i in range(xt.shape[(axis +1) % 2]):
# tmp = correlate(xt[:, i], xt[:, i], 'full')
# assert_array_equal(tmp[lag:], yt[:, i])
#
# # F, axis 1 test
# xt = xff
# axis = -1
# lag = xt.shape[axis] - 1
# yt = autocorr(xt, lag, axis = axis)
#
# yr = yt.copy()
# for i in range(xt.shape[(axis +1) % 2]):
# tmp = correlate(xt[i], xt[i], 'full')
# assert_array_equal(tmp[lag:], yt[i])
#
|