1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
# 2.3 compatibility
try:
set
except NameError:
import sets
set = sets.Set
import numpy as sp
from _delaunay import delaunay
from interpolate import LinearInterpolator, NNInterpolator
__all__ = ['Triangulation']
class Triangulation(object):
"""A Delaunay triangulation of points in a plane.
Triangulation(x, y)
x, y -- the coordinates of the points as 1-D arrays of floats
Let us make the following definitions:
npoints = number of points input
nedges = number of edges in the triangulation
ntriangles = number of triangles in the triangulation
point_id = an integer identifying a particular point (specifically, an
index into x and y), range(0, npoints)
edge_id = an integer identifying a particular edge, range(0, nedges)
triangle_id = an integer identifying a particular triangle
range(0, ntriangles)
Attributes: (all should be treated as read-only to maintain consistency)
x, y -- the coordinates of the points as 1-D arrays of floats.
circumcenters -- (ntriangles, 2) array of floats giving the (x,y)
coordinates of the circumcenters of each triangle (indexed by a
triangle_id).
edge_db -- (nedges, 2) array of point_id's giving the points forming
each edge in no particular order; indexed by an edge_id.
triangle_nodes -- (ntriangles, 3) array of point_id's giving the points
forming each triangle in counter-clockwise order; indexed by a
triangle_id.
triangle_neighbors -- (ntriangles, 3) array of triangle_id's giving the
neighboring triangle; indexed by a triangle_id.
The value can also be -1 meaning that that edge is on the convex hull of
the points and there is no neighbor on that edge. The values are ordered
such that triangle_neighbors[tri, i] corresponds with the edge
*opposite* triangle_nodes[tri, i]. As such, these neighbors are also in
counter-clockwise order.
hull -- list of point_id's giving the nodes which form the convex hull
of the point set. This list is sorted in counter-clockwise order.
"""
def __init__(self, x, y):
self.x = sp.asarray(x, dtype=sp.float64)
self.y = sp.asarray(y, dtype=sp.float64)
if self.x.shape != self.y.shape or len(self.x.shape) != 1:
raise ValueError("x,y must be equal-length 1-D arrays")
self.circumcenters, self.edge_db, self.triangle_nodes, \
self.triangle_neighbors = delaunay(self.x, self.y)
self.hull = self._compute_convex_hull()
def _compute_convex_hull(self):
"""Extract the convex hull from the triangulation information.
The output will be a list of point_id's in counter-clockwise order
forming the convex hull of the data set.
"""
border = (self.triangle_neighbors == -1)
edges = {}
edges.update(dict(zip(self.triangle_nodes[border[:,0]][:,1],
self.triangle_nodes[border[:,0]][:,2])))
edges.update(dict(zip(self.triangle_nodes[border[:,1]][:,2],
self.triangle_nodes[border[:,1]][:,0])))
edges.update(dict(zip(self.triangle_nodes[border[:,2]][:,0],
self.triangle_nodes[border[:,2]][:,1])))
# Take an arbitrary starting point and its subsequent node
hull = list(edges.popitem())
while edges:
hull.append(edges.pop(hull[-1]))
# hull[-1] == hull[0], so remove hull[-1]
hull.pop()
return hull
def linear_interpolator(self, z, default_value=sp.nan):
"""Get an object which can interpolate within the convex hull by
assigning a plane to each triangle.
z -- an array of floats giving the known function values at each point
in the triangulation.
"""
z = sp.asarray(z, dtype=sp.float64)
if z.shape != self.x.shape:
raise ValueError("z must be the same shape as x and y")
return LinearInterpolator(self, z, default_value)
def nn_interpolator(self, z, default_value=sp.nan):
"""Get an object which can interpolate within the convex hull by
the natural neighbors method.
z -- an array of floats giving the known function values at each point
in the triangulation.
"""
z = sp.asarray(z, dtype=sp.float64)
if z.shape != self.x.shape:
raise ValueError("z must be the same shape as x and y")
return NNInterpolator(self, z, default_value)
def prep_extrapolator(self, z, bbox=None):
if bbox is None:
bbox = (self.x[0], self.x[0], self.y[0], self.y[0])
minx, maxx, miny, maxy = sp.asarray(bbox, sp.float64)
minx = min(minx, sp.minimum.reduce(self.x))
miny = min(miny, sp.minimum.reduce(self.y))
maxx = max(maxx, sp.maximum.reduce(self.x))
maxy = max(maxy, sp.maximum.reduce(self.y))
M = max((maxx-minx)/2, (maxy-miny)/2)
midx = (minx + maxx)/2.0
midy = (miny + maxy)/2.0
xp, yp= sp.array([[midx+3*M, midx, midx-3*M],
[midy, midy+3*M, midy-3*M]])
x1 = sp.hstack((self.x, xp))
y1 = sp.hstack((self.y, yp))
newtri = self.__class__(x1, y1)
# do a least-squares fit to a plane to make pseudo-data
xy1 = sp.ones((len(self.x), 3), sp.float64)
xy1[:,0] = self.x
xy1[:,1] = self.y
from scipy import linalg
c, res, rank, s = linalg.lstsq(xy1, z)
zp = sp.hstack((z, xp*c[0] + yp*c[1] + c[2]))
return newtri, zp
def nn_extrapolator(self, z, bbox=None, default_value=sp.nan):
newtri, zp = self.prep_extrapolator(z, bbox)
return newtri.nn_interpolator(zp, default_value)
def linear_extrapolator(self, z, bbox=None, default_value=sp.nan):
newtri, zp = self.prep_extrapolator(z, bbox)
return newtri.linear_interpolator(zp, default_value)
def node_graph(self):
"""Return a graph of node_id's pointing to node_id's.
The arcs of the graph correspond to the edges in the triangulation.
{node_id: set([node_id, ...]), ...}
"""
g = {}
for i, j in self.edge_db:
s = g.setdefault(i, set())
s.add(j)
s = g.setdefault(j, set())
s.add(i)
return g
|