1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
import sync
import sys
import thread
import time
from numpy import arange, shape, zeros
import remote_exec
import population
######
#I've got to clean up evaluate and initial in population so that
#the incorporation of the parallel stuff is smoother.
######
def array_round(x):
y = zeros(shape(x))
for i in range(len(x.flat)):
y[i] = int(round(x[i]))
return y
def divide_list(l,sections):
Ntot = len(l)
Nsec = float(sections)
Neach = Ntot/Nsec
div_points = array_round(arange(0,Ntot,Neach)).tolist()
if div_points[-1] != Ntot: div_points.append(Ntot)
sub_pops = []
st = div_points[0]
for end in div_points[1:]:
sub_pops.append(l[st:end])
st = end
return sub_pops
class parallel_pop_initializer:
def evaluate(self,pop,settings = None):
#only send the individuals out that need evaluation
if len(pop):
Nserv = len(pop.server_list)
groups = divide_list(pop,Nserv)
sys.setcheckinterval(10)
finished = sync.event()
bar = sync.barrier(Nserv)
print '************',len(groups), len(pop.server_list), len(pop)
for i in range(len(groups)):
inputs = {'sub_pop':groups[i],'settings':settings, 'initializer':pop.initializer}
returns = ('sub_pop',)
code = 'initializer.evaluate(sub_pop,settings)'
data_pack = (inputs,returns,code)
server = pop.server_list[i]
thread.start_new_thread(remote_thread_init,(bar,finished,server,data_pack))
finished.wait()
sys.setcheckinterval(10)
#what is this? for ind in pop: ind.evaluate(force)
import cPickle
def plen(obj): return len(cPickle.dumps(obj,1))
class parallel_pop_evaluator:
def evaluate(self,pop,force = 0):
#import tree
#print '1',tree.ref()
#only send the individuals out that need evaluation
if force:
_eval_list = pop.data
else:
_eval_list = filter(lambda x: not x.evaluated,pop)
#print '2',tree.ref()
eval_list = pop.clone()
#print '3',tree.ref()
eval_list.data = _eval_list
if len(eval_list):
Nserv = len(pop.server_list)
groups = divide_list(eval_list,Nserv)
#print '4',tree.ref()
sys.setcheckinterval(10)
finished = sync.event()
bar = sync.barrier(Nserv)
#print "EVAL LENGTH!!!", plen(pop.evaluator)
gr = groups[0]
print "GROUP LENGTH!!!", plen(groups[0]), len(gr),
#print "IND!!!", plen(gr[0]),plen(gr[0].root)
#print '4.5',tree.ref()
for i in range(len(groups)):
inputs = {'sub_pop':groups[i], 'evaluator':pop.evaluator, 'force':force}
returns = ('sub_pop',)
code = 'evaluator.evaluate(sub_pop,force)'
data_pack = (inputs,returns,code)
server = pop.server_list[i]
thread.start_new_thread(remote_thread_eval,(bar,finished,server,data_pack))
#print '7',tree.ref()
finished.wait()
sys.setcheckinterval(10)
#what is this? for ind in pop: ind.evaluate(force)
"""
def evaluate(self,pop,force = 0):
#only send the individuals out that need evaluation
_eval_list = filter(lambda x: not x.evaluated,pop)
eval_list = pop.clone()
eval_list.data = _eval_list
if len(eval_list):
#finest grain possible
groups = divide_list(eval_list,len(eval_list))
finished = sync.event()
bar = sync.barrier(groups)
sys.setcheckinterval(10)
Nserv = len(pop.server_list)
idx = 0
while idx < len(groups):
inputs = {'sub_pop':groups[idx], 'evaluator':pop.evaluator}
returns = ('sub_pop',)
code = 'evaluator.evaluate(sub_pop)'
data_pack = (inputs,returns,code)
server = pop.server_list[i]
thread.start_new_thread(remote_thread_eval,(bar,finished,server,data_pack))
#for i in range(len(groups)):
# inputs = {'sub_pop':groups[i], 'evaluator':pop.evaluator}
# returns = ('sub_pop',)
# code = 'evaluator.evaluate(sub_pop)'
# data_pack = (inputs,returns,code)
# server = pop.server_list[i]
# thread.start_new_thread(remote_thread,(bar,finished,server,data_pack))
finished.wait()
sys.setcheckinterval(10)
#what is this? for ind in pop: ind.evaluate(force)
"""
def remote_thread_init(bar,finished,server,data_pack):
try:
remote = remote_exec.remote_exec(server[0],server[1],0,1)
results = remote.run(data_pack)
#assign the results from the returned data to the local individuals
inputs = data_pack[0]
old = inputs['sub_pop']
new = results['sub_pop']
for i in range(len(old)):
old[i].__dict__.update(new[i].__dict__)
except IndexError:
print 'error in %s,%d' % server
bar.enter()
finished.post()
def remote_thread_eval(bar,finished,server,data_pack):
#import tree
try:
#print '5',tree.ref()
remote = remote_exec.remote_exec(server[0],server[1],0,1)
results = remote.run(data_pack)
#print '6',tree.ref()
#assign the results from the returned data to the local individuals
inputs = data_pack[0]
old = inputs['sub_pop']
new = results['sub_pop']
for gnm in new:
gnm.root.delete_circulars()
del gnm.root
#print '6.25',tree.ref()
for i in range(len(old)):
old[i].__dict__.update(new[i].__dict__)
#print '6.5',tree.ref()
except IndexError:
print 'error in %s,%d' % server
"""
import sys
#r = new[0].root
#print 'ref count',sys.getrefcount(r)
#print '6.75',tree.ref()
#Huh??? Why do I need to delete the new genomes
#individually here? Why aren't they garbage collected?
indices = range(len(new))
indices.reverse()
for i in indices:
del new[i]
#print 'ref count',sys.getrefcount(r)
#print '6.8',tree.ref()
#r.delete_circulars()
#print 'ref count',sys.getrefcount(r)
#print '6.9',tree.ref()
#del r
#print '6.95',tree.ref()
"""
bar.enter()
finished.post()
class ga_parallel_pop(population.population):
parallel_evaluator = parallel_pop_evaluator()
parallel_initializer = parallel_pop_initializer()
def __init__(self,genome,size=1,server_list=None):
"""Arguments:
genome -- a genome object.
size -- number. The population size. The genome will be
replicated size times to fill the population.
server_list -- a list of tuple pairs with machine names and
ports listed for the available servers
ex: [(ee.duke.edu,8000),('elsie.ee.duke.edu',8000)]
"""
population.population.__init__(self,genome,size)
assert(server_list)
self.server_list = server_list
def initialize(self,settings = None):
"""This method **must** be called before a genetic algorithm
begins evolving the population. It takes care of initializing
the individual genomes, evaluating them, and scaling the population.
It also clears and intializes the statistics for the population.
Arguments:
settings -- dictionary of genetic algorithm parameters. These
are passed on to the genomes for initialization.
"""
self.stats = {'current':{},'initial':{},'overall':{}}
self.stats['ind_evals'] = 0
print "beigninning genome generation"
b = time.clock()
self.parallel_initializer.evaluate(self,settings)
e = time.clock()
print "finished generation: ", e-b
self.touch();
b = time.clock()
self.evaluate()
e = time.clock()
print "evaluation time: ", e-b
self.scale()
self.update_stats()
self.stats['initial']['avg'] = self.stats['current']['avg']
self.stats['initial']['max'] = self.stats['current']['max']
self.stats['initial']['min'] = self.stats['current']['min']
self.stats['initial']['dev'] = self.stats['current']['dev']
def evaluate(self, force = 0):
""" call the parallel_evaluator instead of the evaluator directly
"""
self.selector.clear()
self.parallel_evaluator.evaluate(self,force)
#self.post_evaluate()
#all of the remaining should be put in post eval...
self.sort()
#this is a cluge to get eval count to work correctly
preval = self.stats['ind_evals']
for ind in self:
self.stats['ind_evals'] = self.stats['ind_evals'] + ind.evals
ind.evals = 0
print 'evals: ', self.stats['ind_evals'] - preval
self.touch()
self.evaluated = 1
########################## test stuff ############################
#import genome
#import gene
#import time
#
#import socket
#
#class objective:
# def __init__(self,wait=.01):
# self.wait = wait
# def evaluate(self,genome):
# time.sleep(self.wait)
# return sum(genome.array(),axis=0)
#
#def test_pop(server_list,size=100,wait=.01):
# obj = objective(wait)
# the_gene = gene.float_gene((0,2.5))
# genome_ = genome.list_genome(the_gene.replicate(5))
# genome_.evaluator = obj
# pop = ga_parallel_pop(genome_,size,server_list)
# print '########### awaiting evaluation#############'
# pop.initialize()
# print ' evaluation done!'
# print 'best:', pop.best()
# print 'worst',pop.worst()
#
#
#def gen_pop():
# genome.list_genome.evaluator = objective()
# gene = gene.float_gene((0,2.5))
# genome_ = genome.list_genome(gene.replicate(5))
# pop = ga_parallel_pop(genome_,100,[(host,port),])
# return pop
#
#import os
#
#import parallel_pop
#
#
#def test_pop2(server_list,size=100,wait=.01):
# import hmm_gnm,os
# genome = hmm_gnm.make_genome()
# #pop = ga_parallel_pop(genome,4,server_list)
# global galg
# #genome.target = targets[0]
# pop = ga_parallel_pop(genome,1,server_list)
# galg = hmm_gnm.class_ga(pop)
# galg.settings.update({ 'pop_size':6,'gens':2,'p_mutate':.03,
# 'dbase':os.environ['HOME'] + '/all_lift3', 'p_cross':0.9, 'p_replace':.6,
# 'p_deviation': -.001})
# galg.evolve()
#
# print '########### awaiting evaluation#############'
# pop.initialize()
# print ' evaluation done!'
# print 'best:', pop.best()
# print 'worst',pop.worst()
#
#import thread
#def test():
# host = socket.gethostname()
# port = 8000
# server_list = [(host,port),(host,port+1)]
# for server in server_list:
# host,port = server
# thread.start_new_thread(remote_exec.server,(host,port))
# thread.start_new_thread(test_pop2,(server_list,))
#
#def test2(machines=32,size=100,wait=.01):
# import time
# t1 = time.time()
# #requires that servers are started on beowulf 1 and 2.
# import beowulf
# server_list = beowulf.beowulf.servers[:machines]
# thread.start_new_thread(test_pop,(server_list,size,wait))
# print 'total time:', time.time()-t1
|