1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
"""
some basic language objects
if you don't specify a node_type for these, it is usually a good idea to
not allow crossovers at these nodes. That would allow two (maybe different)
list_range nodes to exchange places.
"""
from numpy import log10
import tree
import gene
#import weakdict
#class opt_object(tree.tree_node,weakdict.WeakValue):
# opt_dict = weakdict.WeakDict()
# def __init__(self,node_type, sub_nodes):
# tree.tree_node.__init__(self,sub_nodes,node_type=node_type)
# weakdict.WeakValue.__init__(self)
# opt_object.opt_dict[id(self)] = self
# def _create(self,parent = None):
# new = tree.tree_node._create(self,parent)
# weakdict.WeakValue.__init__(new)
# self._WeakValue__cid = None #force a reset of the __cid value
# weakdict.WeakValue.__init__(new) #now get a new value for it
# opt_object.opt_dict[id(new)] = new
# return new
# def __del__(self):
# tree.tree_node.__del__(self)
# weakdict.WeakValue.__del__(self)
class opt_object(tree.tree_node):
def __init__(self,node_type, sub_nodes):
tree.tree_node.__init__(self,sub_nodes,node_type=node_type)
class float_range(gene.float_gene,opt_object):
optimize = 1
def __init__(self,bounds,node_type='float_range', sub_nodes = 0):
opt_object.__init__(self,node_type,sub_nodes)
gene.float_gene.__init__(self,bounds[:2])
tree.tree_node.__init__(self,sub_nodes,node_type=node_type)
if(len(bounds) == 3): self.default = bounds[2]
else: self.default = (bounds[0] + bounds[1])/2.
self._value = self.default
print self._value
def clone(self, parent=None):
return tree.tree_node.clone(self,parent)
# def mutate(self):
# m = gene.float_gene.mutate(self)
# if(m and self.parent): self.parent.recalc(force_parent=1)
# return m
def scale(self,sc):
self.bounds = (self.bounds[0]*sc,self.bounds[1]*sc)
self.default = self.default*sc
self._value = self._value*sc
def defaultize(self):
self._value = self.default
for child in self._children:
child.defaultize()
def create(self, parent):
new = tree.tree_node.create(self,parent)
new.initialize()
gene.float_gene.initialize(new)
return new
def __del__(self):
# gene.float_gene.__del__(self)
opt_object.__del__(self)
def __repr__(self):
try:
val = self.value()
if val < .01 or val > 1000:
v = "%4.3e" % self.value()
else:
v = "%4.3f" % self.value()
except gene.GAError:
v = 'not initialized'
self.label = '%s = %s' % (self.node_type, v)
return tree.tree_node.__repr__(self)
class log_float_range(gene.log_float_gene,opt_object):
optimize = 1
def __init__(self,bounds,node_type='log_float_range', sub_nodes = 0):
gene.log_float_gene.__init__(self,bounds[:2])
opt_object.__init__(self,node_type,sub_nodes)
if len(bounds) == 3:
self.default = bounds[2]
else:
self.default = (bounds[0] + bounds[1])/2.
self._value = log10(self.default)
def clone(self, parent=None):
return tree.tree_node.clone(self,parent)
def mutate(self):
m=gene.log_float_gene.mutate(self)
if m and self.parent:
self.parent.recalc(force_parent=1)
return m
def scale(self,sc):
self.default = self.default*sc
sc = log10(sc)
self.bounds = (self.bounds[0]*sc,self.bounds[1]*sc)
self._value = self._value*sc
def defaultize(self):
self._value = self.default
for child in self._children:
child.defaultize()
def create(self,parent):
new = tree.tree_node.create(self,parent)
new.initialize()
gene.log_float_gene.initialize(new)
return new
def __del__(self):
# gene.log_float_gene.__del__(self)
opt_object.__del__(self)
def __repr__(self):
try:
val = self.value()
if val < .01 or val > 1000:
v = "%4.3e" % self.value()
else:
v = "%4.3f" % self.value()
except gene.GAError:
v = 'not initialized'
self.label = '%s = %s' % (self.node_type, v)
return tree.tree_node.__repr__(self)
class list_range(gene.list_gene,opt_object):
optimize = 1
def __init__(self, allele_set, node_type='list_range', default=None, sub_nodes = 0):
gene.list_gene.__init__(self,allele_set)
opt_object.__init__(self,node_type,sub_nodes)
gene.list_gene.initialize(self) # prevents trouble in tree generation
if default:
self.default = default
else:
self.default = allele_set[int(len(allele_set)/2.)] #the center item
self._value = self.default
def clone(self, parent=None):
return tree.tree_node.clone(self,parent)
def scale(self,sc):
for i in range(len(self.allele_set)):
self.allele_set[i] = self.allele_set[i] *sc
self.default = self.default*sc
self._value = self._value*sc
def defaultize(self):
self._value = self.default
for child in self._children:
child.defaultize()
def create(self,parent):
new = tree.tree_node.create(self,parent)
new.initialize()
gene.list_gene.initialize(new)
return new
def __del__(self):
# gene.list_gene.__del__(self)
opt_object.__del__(self)
def __repr__(self):
self.label = '%s = %s' % (self.node_type, self.value())
return tree.tree_node.__repr__(self)
class val(gene.frozen,opt_object):
optimize = 0
def __init__(self, val, node_type='val', sub_nodes=0):
gene.frozen.__init__(self,val)
opt_object.__init__(self,node_type,sub_nodes)
def clone(self,parent = None):
return tree.tree_node.clone(self,parent)
def scale(self,sc):
self._value = self._value*sc
def defaultize(self):
pass
def create(self,parent):
new = tree.tree_node.create(self,parent)
new.initialize()
return new
def __del__(self):
# gene.frozen.__del__(self)
opt_object.__del__(self)
def __repr__(self):
self.label = '%s = %s' % (self.node_type, self.value())
return tree.tree_node.__repr__(self)
# These two routines are useful for picking off or replacing the nodes in a tree
# that should be that should be numerically optimized. They are helpful if your
# interested in using a gradient method to optimize some of the paramters of the
# array
def pick_numbers(node):
start = []; lower = []; upper =[];
for child in node.children():
s, l, u = pick_numbers(child)
start = start + s
lower = lower + l
upper = upper + u
#for now only works with float_genes
if hasattr(node,'optimize') and node.optimize == 1:
s = node._value
l,u = node.bounds
start = start + [s]
lower = lower + [l]
upper = upper + [u]
else:
print 'no opt:', node.__class__
return start, lower, upper
def put_numbers(node,vals, index = 0):
for child in node.children():
index = put_numbers(child,vals,index)
if hasattr(node,'optimize') and node.optimize == 1:
s = node._value = vals[index]
index = index + 1
return index
# Grab the numerical nodes that need to be optimized so that you can directly
# manipulate them
def pick_optimize_nodes(node):
nodes = [];
for child in node.children():
nodes = nodes + pick_optimize_nodes(child)
#for now only works with float_genes
if hasattr(node,'optimize') and node.optimize == 1:
nodes = nodes + [node]
return nodes
|