File: tree_opt.py

package info (click to toggle)
python-scipy 0.6.0-12
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 32,016 kB
  • ctags: 46,675
  • sloc: cpp: 124,854; ansic: 110,614; python: 108,664; fortran: 76,260; objc: 424; makefile: 384; sh: 10
file content (252 lines) | stat: -rw-r--r-- 8,098 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
"""
    some basic language objects
    if you don't specify a node_type for these, it is usually a good idea to
    not allow crossovers at these nodes.  That would allow two (maybe different)
    list_range nodes to exchange places.
"""

from numpy import log10

import tree
import gene


#import weakdict
#class opt_object(tree.tree_node,weakdict.WeakValue):
#        opt_dict = weakdict.WeakDict()
#        def __init__(self,node_type, sub_nodes):
#                tree.tree_node.__init__(self,sub_nodes,node_type=node_type)
#                weakdict.WeakValue.__init__(self)
#                opt_object.opt_dict[id(self)] = self
#        def _create(self,parent = None):
#                new = tree.tree_node._create(self,parent)
#                weakdict.WeakValue.__init__(new)
#                self._WeakValue__cid = None #force a reset of the __cid value
#                weakdict.WeakValue.__init__(new) #now get a new value for it
#                opt_object.opt_dict[id(new)] = new
#                return new
#        def __del__(self):
#                tree.tree_node.__del__(self)
#                weakdict.WeakValue.__del__(self)

class opt_object(tree.tree_node):
    def __init__(self,node_type, sub_nodes):
        tree.tree_node.__init__(self,sub_nodes,node_type=node_type)

class float_range(gene.float_gene,opt_object):
    optimize = 1
    def __init__(self,bounds,node_type='float_range', sub_nodes = 0):
        opt_object.__init__(self,node_type,sub_nodes)
        gene.float_gene.__init__(self,bounds[:2])
        tree.tree_node.__init__(self,sub_nodes,node_type=node_type)
        if(len(bounds) == 3): self.default = bounds[2]
        else: self.default = (bounds[0] + bounds[1])/2.
        self._value = self.default
        print self._value

    def clone(self, parent=None):
        return tree.tree_node.clone(self,parent)

#    def mutate(self):
#            m = gene.float_gene.mutate(self)
#            if(m and self.parent): self.parent.recalc(force_parent=1)
#            return m

    def scale(self,sc):
        self.bounds = (self.bounds[0]*sc,self.bounds[1]*sc)
        self.default = self.default*sc
        self._value = self._value*sc

    def defaultize(self):
        self._value = self.default
        for child in self._children:
            child.defaultize()

    def create(self, parent):
        new = tree.tree_node.create(self,parent)
        new.initialize()
        gene.float_gene.initialize(new)
        return new

    def __del__(self):
#               gene.float_gene.__del__(self)
        opt_object.__del__(self)

    def __repr__(self):
        try:
            val = self.value()
            if val < .01 or val > 1000:
                v = "%4.3e" % self.value()
            else:
                v = "%4.3f" % self.value()
        except gene.GAError:
            v = 'not initialized'
        self.label = '%s = %s' % (self.node_type, v)
        return tree.tree_node.__repr__(self)

class log_float_range(gene.log_float_gene,opt_object):
    optimize = 1

    def __init__(self,bounds,node_type='log_float_range', sub_nodes = 0):
        gene.log_float_gene.__init__(self,bounds[:2])
        opt_object.__init__(self,node_type,sub_nodes)
        if len(bounds) == 3:
            self.default = bounds[2]
        else:
            self.default = (bounds[0] + bounds[1])/2.
        self._value = log10(self.default)

    def clone(self, parent=None):
        return tree.tree_node.clone(self,parent)

    def mutate(self):
            m=gene.log_float_gene.mutate(self)
            if m and self.parent:
                self.parent.recalc(force_parent=1)
            return m

    def scale(self,sc):
        self.default = self.default*sc
        sc = log10(sc)
        self.bounds = (self.bounds[0]*sc,self.bounds[1]*sc)
        self._value = self._value*sc

    def defaultize(self):
        self._value = self.default
        for child in self._children:
            child.defaultize()

    def create(self,parent):
        new = tree.tree_node.create(self,parent)
        new.initialize()
        gene.log_float_gene.initialize(new)
        return new

    def __del__(self):
#               gene.log_float_gene.__del__(self)
        opt_object.__del__(self)

    def __repr__(self):
        try:
            val = self.value()
            if val < .01 or val > 1000:
                v = "%4.3e" % self.value()
            else:
                v = "%4.3f" % self.value()
        except gene.GAError:
            v = 'not initialized'
        self.label = '%s = %s' % (self.node_type, v)
        return tree.tree_node.__repr__(self)

class list_range(gene.list_gene,opt_object):
    optimize = 1

    def __init__(self, allele_set, node_type='list_range', default=None, sub_nodes = 0):
        gene.list_gene.__init__(self,allele_set)
        opt_object.__init__(self,node_type,sub_nodes)
        gene.list_gene.initialize(self) # prevents trouble in tree generation
        if default:
            self.default = default
        else:
            self.default = allele_set[int(len(allele_set)/2.)] #the center item
        self._value = self.default

    def clone(self, parent=None):
        return tree.tree_node.clone(self,parent)

    def scale(self,sc):
        for i in range(len(self.allele_set)):
            self.allele_set[i] = self.allele_set[i] *sc
        self.default = self.default*sc
        self._value = self._value*sc

    def defaultize(self):
        self._value = self.default
        for child in self._children:
            child.defaultize()

    def create(self,parent):
        new = tree.tree_node.create(self,parent)
        new.initialize()
        gene.list_gene.initialize(new)
        return new

    def __del__(self):
#               gene.list_gene.__del__(self)
        opt_object.__del__(self)

    def __repr__(self):
        self.label = '%s = %s' % (self.node_type, self.value())
        return tree.tree_node.__repr__(self)

class val(gene.frozen,opt_object):
    optimize = 0

    def __init__(self, val, node_type='val', sub_nodes=0):
        gene.frozen.__init__(self,val)
        opt_object.__init__(self,node_type,sub_nodes)

    def clone(self,parent = None):
        return tree.tree_node.clone(self,parent)

    def scale(self,sc):
        self._value = self._value*sc

    def defaultize(self):
        pass

    def create(self,parent):
        new = tree.tree_node.create(self,parent)
        new.initialize()
        return new

    def __del__(self):
#               gene.frozen.__del__(self)
        opt_object.__del__(self)

    def __repr__(self):
        self.label = '%s = %s' % (self.node_type, self.value())
        return tree.tree_node.__repr__(self)


# These two routines are useful for picking off or replacing the nodes in a tree
# that should be that should be numerically optimized.  They are helpful if your
# interested in using a gradient method to optimize some of the paramters of the
# array

def pick_numbers(node):
    start = []; lower = []; upper =[];
    for child in node.children():
        s, l, u = pick_numbers(child)
        start = start + s
        lower = lower + l
        upper = upper + u
    #for now only works with float_genes
    if hasattr(node,'optimize') and node.optimize == 1:
        s = node._value
        l,u = node.bounds
        start = start + [s]
        lower = lower + [l]
        upper = upper + [u]
    else:
        print 'no opt:', node.__class__
    return start, lower, upper

def put_numbers(node,vals, index = 0):
    for child in node.children():
        index = put_numbers(child,vals,index)
    if hasattr(node,'optimize') and node.optimize == 1:
        s = node._value = vals[index]
        index = index + 1
    return index

# Grab the numerical nodes that need to be optimized so that you can directly
# manipulate them
def pick_optimize_nodes(node):
    nodes = [];
    for child in node.children():
        nodes = nodes + pick_optimize_nodes(child)
    #for now only works with float_genes
    if hasattr(node,'optimize') and node.optimize == 1:
        nodes = nodes + [node]
    return nodes