1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
import numpy as np
from scipy import linalg
import os
# Various utilities and data for color processing
# See http://www.cvrl.org/ for text file of the data
# rgb the linear sRGB color space using D65 as a white-point
# (IEC 61966-2-1). Represents standard monitor (w/o gamma correction).
# rgbp is the non-linear color-space (w/ gamma correction)
# rgbntsc is the NTSC receiver primary color coordinate system
# rgbcie is the CIE, monochromatic RGB primary system
# rgbsb is the Stiles & Burch (1955) 2-deg color coordinate system
# Primaries for the coordinate systems
cie_primaries = [700, 546.1, 435.8]
sb_primaries = [1./155 * 1e5, 1./190 * 1e5, 1./225 * 1e5]
# Matrices from Jain
xyz_from_rgbcie = [[0.490, 0.310, 0.200],
[0.177, 0.813, 0.011],
[0.000, 0.010, 0.990]]
rgbcie_from_xyz = linalg.inv(xyz_from_rgbcie)
rgbntsc_from_xyz = [[1.910, -0.533, -0.288],
[-0.985, 2.000, -0.028],
[0.058, -0.118, 0.896]]
yiq_from_rgbntsc = [[0.299, 0.587, 0.114],
[0.596, -0.274, -0.322],
[0.211, -0.523, 0.312]]
uvw_from_xyz = [[2.0/3.0, 0, 0],
[0,1,0],
[-0.5,1.5,0.5]]
# From sRGB specification
xyz_from_rgb = [[0.412453, 0.357580, 0.180423],
[0.212671, 0.715160, 0.072169],
[0.019334, 0.119193, 0.950227]]
rgb_from_xyz = linalg.inv(xyz_from_rgb)
# From http://www.mir.com/DMG/ycbcr.html
ycbcr_from_rgbp = [[0.299, 0.587, 0.114],
[-0.168736, -0.331264, 0.5],
[0.5, -0.418688, -0.081312]]
rgbp_from_ycbcr = linalg.inv(ycbcr_from_rgbp)
# LMS color space spectral matching curves provide the
# spectral response curves of three types of cones.
#
#
# Vos, Estevez, and Walraven (1990)
# with alteration in S-cone sensitivity from
# Stockman and Sharpe (2000)
# scaled so that sum(LMS,axis=0) has a peak of 1
# just like LMS_from_XYZ
lms_from_rgbsb = [[0.14266235473644004, 0.49009667755566039,
0.028959576047175539],
[0.013676614570405768, 0.35465861798651171,
0.029062883056895625],
[0.0, 0.00029864360424843419, 0.01837806004659253]]
# use Judd, Vos CIE color matching curves XYZJV
# with Stockman and Sharpe(2000) S-cone alteration.
# scaled so that sum(LMS,axis=0) has a peak of 1
# based on CIE standard observer
lms_from_xyz = [[0.15513920309034629, 0.54298741130344153,
-0.037010041369525896],
[-0.15513920309034629, 0.45684891207177714,
0.029689739651154123],
[0.0, 6.3686624249879016e-05, 0.0073203016383768691]]
# Read spectral matching curves from file
# XYZJV and RGBsb55 are most modern curves to use
# LMScvrl are the cone response curves from www.cvrl.org
# (normalized to peak at 1 for all three cones)
varnames = ['xyz31','xyz64','xyzjv','rgbsb55','lmscvrl']
k=-1
thisdict = globals()
for name in ['ciexyz31_1.txt','ciexyz64_1.txt','ciexyzjv.txt',
'sbrgb2.txt','linss2_10e_1.txt']:
k = k + 1
name = os.path.join(os.path.dirname(__file__),name)
afile = open(name)
lines = afile.readlines()
afile.close()
wlen = []
xl = []
yl = []
zl = []
for line in lines:
this = line.split(',')
if this[0].strip()[0] not in '0123456789':
break
wlen.append(int(this[0].strip()))
xl.append(float(this[1].strip()))
yl.append(float(this[2].strip()))
try:
zl.append(float(this[3].strip()))
except ValueError, inst:
msg = inst.args[0]
if msg.startswith("empty string"):
zl.append(0.0)
else:
raise inst
thisdict[varnames[k]] = (wlen,xl,yl,zl)
del thisdict, wlen, xl, yl, zl, afile, lines, this, line, k, msg, name
del varnames, inst
# XYZ white-point coordinates
# from http://www.aim-dtp.net/aim/technology/cie_xyz/cie_xyz.htm
whitepoints = {'CIE A': ['Normal incandescent', 0.4476, 0.4074],
'CIE B': ['Direct sunlight', 0.3457, 0.3585],
'CIE C': ['Average sunlight', 0.3101, 0.3162],
'CIE E': ['Normalized reference', 1.0/3, 1.0/3],
'D50' : ['Bright tungsten', 0.3457, 0.3585],
'D55' : ['Cloudy daylight', 0.3324, 0.3474],
'D65' : ['Daylight', 0.312713, 0.329016],
'D75' : ['?', 0.299, 0.3149],
'D93' : ['low-quality old CRT', 0.2848, 0.2932]
}
# convert to X,Y,Z white-point
def triwhite(chrwhite):
x,y = chrwhite
X = x / y
Y = 1.0
Z = (1-x-y)/y
return X,Y,Z
for key in whitepoints.keys():
whitepoints[key].append(triwhite(whitepoints[key][1:]))
del key
def tri2chr(tri,axis=None):
"""Convert tristimulus values to chromoticity values"""
tri = np.asarray(tri)
n = len(tri.shape)
if axis is None:
axis = coloraxis(tri.shape)
slices = []
for k in range(n):
slices.append(slice(None))
slices[axis] = np.newaxis
norm = np.sum(tri,axis=axis)[slices]
slices[axis] = slice(None,2)
out = tri[slices]/norm
return out
# find the lowest dimension of size 3
def coloraxis(shape):
for k, val in enumerate(shape):
if val == 3:
return k
raise ValueError, "No Color axis found."
def convert(matrix,TTT,axis=None):
TTT = np.asarray(TTT)
if axis is None:
axis = coloraxis(TTT.shape)
if (axis != 0):
TTT = np.swapaxes(TTT,0,axis)
oldshape = TTT.shape
TTT = np.reshape(TTT,(3,-1))
OUT = np.dot(matrix, TTT)
OUT.shape = oldshape
if (axis != 0):
OUT = np.swapaxes(OUT,axis,0)
return OUT
def xyz2rgbcie(xyz,axis=None):
return convert(rgbcie_from_xyz, xyz, axis)
def xyz2rgb(xyz,axis=None):
return convert(rgb_from_xyz, xyz, axis)
def rgb2xyz(rgb, axis=None):
return convert(xyz_from_rgb, rgb, axis)
def makeslices(n):
slices = []
for k in range(n):
slices.append(slice(None))
return slices
def separate_colors(xyz,axis=None):
if axis is None:
axis = coloraxis(xyz.shape)
n = len(xyz.shape)
slices = makeslices(n)
slices[axis] = 0
x = xyz[slices]
slices[axis] = 1
y = xyz[slices]
slices[axis] = 2
z = xyz[slices]
return x, y, z, axis
def join_colors(c1,c2,c3,axis):
c1,c2,c3 = np.asarray(c1),np.asarray(c2),np.asarray(c3)
newshape = c1.shape[:axis] + (1,) + c1.shape[axis:]
c1.shape = newshape
c2.shape = newshape
c3.shape = newshape
return np.concatenate((c1,c2,c3),axis=axis)
def xyz2lab(xyz, axis=None, wp=whitepoints['D65'][-1], doclip=1):
x,y,z,axis = separate_colors(xyz,axis)
xn,yn,zn = x/wp[0], y/wp[1], z/wp[2]
def f(t):
eps = 216/24389.
kap = 24389/27.
return np.where(t > eps,
np.power(t, 1.0/3),
(kap*t + 16.0)/116)
fx,fy,fz = f(xn), f(yn), f(zn)
L = 116*fy - 16
a = 500*(fx - fy)
b = 200*(fy - fz)
if doclip:
L = np.clip(L, 0.0, 100.0)
a = np.clip(a, -500.0, 500.0)
b = np.clip(b, -200.0, 200.0)
return join_colors(L,a,b,axis)
def lab2xyz(lab, axis=None, wp=whitepoints['D65'][-1]):
lab = np.asarray(lab)
L,a,b,axis = separate_colors(lab,axis)
fy = (L+16)/116.0
fz = fy - b / 200.
fx = a/500.0 + fy
def finv(y):
eps3 = (216/24389.)**3
kap = 24389/27.
return np.where(y > eps3,
np.power(y,3),
(116*y-16)/kap)
xr, yr, zr = finv(fx), finv(fy), finv(fz)
return join_colors(xr*wp[0],yr*wp[1],zr*wp[2],axis)
def rgb2lab(rgb):
return xyz2lab(rgb2xyz(rgb))
def lab2rgb(lab):
return xyz2rgb(lab2xyz(lab))
def _uv(x, y, z):
""" The u, v formulae for CIE 1976 L*u*v* computations.
"""
denominator = (x + 15*y + 3*z)
zeros = (denominator == 0.0)
denominator = np.where(zeros, 1.0, denominator)
# I'm not entirely sure about these defaults when X=Y=Z=0.
u_numerator = np.where(zeros, 4.0, 4*x)
v_numerator = np.where(zeros, 9.0, 9 * y)
return u_numerator/denominator, v_numerator/denominator
def xyz2luv(xyz, axis=None, wp=whitepoints['D65'][-1]):
x, y, z, axis = separate_colors(xyz, axis)
xn, yn, zn = x/wp[0], y/wp[1], z/wp[2]
Ls = 116.0 * np.power(yn, 1./3) - 16.0
small_mask = (y <= 0.008856*wp[1])
Ls[small_mask] = 903.0 * y[small_mask] / wp[1]
unp, vnp = _uv(*wp)
up, vp = _uv(x, y, z)
us = 13 * Ls * (up - unp)
vs = 13 * Ls * (vp - vnp)
return join_colors(Ls, us, vs, axis)
def luv2xyz(luv, axis=None, wp=whitepoints['D65'][-1]):
Ls, us, vs, axis = separate_colors(luv, axis)
unp, vnp = _uv(*wp)
small_mask = (Ls <= 903.3 * 0.008856)
y = wp[1] * ((Ls + 16.0) / 116.0) ** 3
y[small_mask] = Ls * wp[1] / 903.0
up = us / (13*Ls) + us
vp = vs / (13*Ls) + vs
x = 9.0 * y * up / (4.0 * vp)
z = -x / 3.0 - 5.0 * y + 3.0 * y/vp
return join_colors(x, y, z, axis)
def rgb2luv(rgb):
return xyz2luv(rgb2xyz(rgb))
def luv2rgb(luv):
return xyz2rgb(luv2xyz(luv))
# RGB values that will be displayed on a screen are always
# R'G'B' values. To get the XYZ value of the color that will be
# displayed you need a calibrated monitor with a profile
# -- someday we should support reading and writing such profiles and
# doing color conversion with them.
# But, for quick-and-dirty calculation you can often assume the sR'G'B'
# coordinate system for your computer, and so the rgbp2rgb will
# put you in the linear coordinate system (assuming normalized to [0,1]
# sR'G'B' coordiates)
#
# sRGB <-> sR'G'B' equations from
# http://www.w3.org/Graphics/Color/sRGB
# http://www.srgb.com/basicsofsrgb.htm
# Macintosh displays are usually gamma = 1.8
# These transformations are done with normalized [0,1.0] coordinates
# when gamma is None:
# rgb2rgbp gives the nonlinear (gamma corrected) sR'G'B' from
# linear sRGB values
# approximately the same as rgb**(1.0/2.2)
# otherwise do a simple gamma calculation
# rgbp = rgb**(1.0/gamma)
def rgb2rgbp(rgb,gamma=None):
rgb = np.asarray(rgb)
if gamma is None:
eps = 0.0031308
return np.where(rgb < eps, 12.92*rgb,
1.055*rgb**(1.0/2.4) - 0.055)
else:
return rgb**(1.0/gamma)
# when gamma is None:
# rgbp2rgb gives linear sRGB values from nonlinear sR'G'B' values
# approximately the same as rgbp**2.2
# otherwise do a simple gamma coorection
# rgb = rgbp**gamma
#
def rgbp2rgb(rgbp,gamma=None):
rgbp = np.asarray(rgbp)
if gamma is None:
eps = 0.04045
return np.where(rgbp <= eps, rgbp / 12.92,
np.power((rgbp + 0.055)/1.055,2.4))
else:
return rgbp**gamma
# The Y'CbCr coordinate system is useful because
#
# Y'CbCr information from here
# http://www.mir.com/DMG/ycbcr.html
# This transforms from rgbp coordinates to normalized
# y' cb cr coordinates y' in [0,1], cb and cr in [-0.5,0.5]
#
# To convert to 8-bit use (according to the web-page cited)
# Y' = y'*219 + 16 => [16,235]
# Cb = cb*224 + 128 => [16,240]
# Cr = cr*224 + 128 => [16,240]
def rgbp2ycbcr(rgbp,axis=None):
return convert(ycbcr_from_rgbp, rgbp, axis)
def ycbcr2rgbp(ycbcr,axis=None):
return convert(rgbp_from_ycbcr, ycbcr, axis)
def rgb2ycbcr(rgb,gamma=None,axis=None):
return rgbp2ycbcr(rgb2rgbp(rgb,gamma),axis)
def ycbcr2rgb(ycbcr,gamma=None,axis=None):
return rgbp2rgb(ycbcr2rgbp(ycbcr,axis),gamma)
def ycbcr_8bit(ycbcr,axis=None):
y,cb,cr,axis = separate_colors(ycbcr,axis)
Y = np.asarray((y*219 + 16),np.uint8)
Cb = np.asarray((cb*224 + 128),np.uint8)
Cr = np.asarray((cr*224 + 128),np.uint8)
return join_colors(Y,Cb,Cr,axis)
def ycbcr_norm(YCbCr,axis=None):
Y,Cb,Cr,axis = separate_colors(YCbCr,axis)
y = (Y-16.)/219
cb = (Cb-128.)/224
cr = (Cr-128.)/224
return join_colors(y,cb,cr,axis)
|