File: color.py

package info (click to toggle)
python-scipy 0.6.0-12
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 32,016 kB
  • ctags: 46,675
  • sloc: cpp: 124,854; ansic: 110,614; python: 108,664; fortran: 76,260; objc: 424; makefile: 384; sh: 10
file content (397 lines) | stat: -rw-r--r-- 12,113 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

import numpy as np
from scipy import linalg
import os

# Various utilities and data for color processing
#  See http://www.cvrl.org/ for text file of the data

# rgb  the linear sRGB color space using D65 as a white-point
#      (IEC 61966-2-1).  Represents standard monitor (w/o gamma correction).
# rgbp is the non-linear color-space (w/ gamma correction)
# rgbntsc is the NTSC receiver primary color coordinate system
# rgbcie is the CIE, monochromatic RGB primary system
# rgbsb is the Stiles & Burch (1955) 2-deg color coordinate system

# Primaries for the coordinate systems
cie_primaries = [700, 546.1, 435.8]

sb_primaries = [1./155 * 1e5, 1./190 * 1e5, 1./225 * 1e5]


# Matrices from Jain

xyz_from_rgbcie = [[0.490, 0.310, 0.200],
                   [0.177, 0.813, 0.011],
                   [0.000, 0.010, 0.990]]

rgbcie_from_xyz = linalg.inv(xyz_from_rgbcie)

rgbntsc_from_xyz = [[1.910, -0.533, -0.288],
                    [-0.985, 2.000, -0.028],
                    [0.058, -0.118, 0.896]]

yiq_from_rgbntsc = [[0.299, 0.587, 0.114],
                    [0.596, -0.274, -0.322],
                    [0.211, -0.523, 0.312]]

uvw_from_xyz = [[2.0/3.0, 0, 0],
                [0,1,0],
                [-0.5,1.5,0.5]]

# From sRGB specification

xyz_from_rgb =  [[0.412453, 0.357580, 0.180423],
                 [0.212671, 0.715160, 0.072169],
                 [0.019334, 0.119193, 0.950227]]

rgb_from_xyz = linalg.inv(xyz_from_rgb)

# From http://www.mir.com/DMG/ycbcr.html

ycbcr_from_rgbp = [[0.299, 0.587, 0.114],
                   [-0.168736, -0.331264, 0.5],
                   [0.5, -0.418688, -0.081312]]

rgbp_from_ycbcr = linalg.inv(ycbcr_from_rgbp)


# LMS color space spectral matching curves provide the
#  spectral response curves of three types of cones.
#
#
# Vos, Estevez, and Walraven (1990)
# with alteration in S-cone sensitivity from
#  Stockman and Sharpe (2000)
# scaled so that sum(LMS,axis=0) has a peak of 1
#  just like LMS_from_XYZ

lms_from_rgbsb = [[0.14266235473644004, 0.49009667755566039,
                   0.028959576047175539],
                  [0.013676614570405768, 0.35465861798651171,
                   0.029062883056895625],
                  [0.0, 0.00029864360424843419, 0.01837806004659253]]

# use Judd, Vos CIE color matching curves XYZJV
#  with Stockman and Sharpe(2000) S-cone alteration.
# scaled so that sum(LMS,axis=0) has a peak of 1
#  based on CIE standard observer

lms_from_xyz = [[0.15513920309034629, 0.54298741130344153,
                 -0.037010041369525896],
                [-0.15513920309034629, 0.45684891207177714,
                 0.029689739651154123],
                [0.0, 6.3686624249879016e-05, 0.0073203016383768691]]

# Read spectral matching curves from file
# XYZJV and RGBsb55 are most modern curves to use
# LMScvrl are the cone response curves from www.cvrl.org
#   (normalized to peak at 1 for all three cones)

varnames = ['xyz31','xyz64','xyzjv','rgbsb55','lmscvrl']
k=-1
thisdict = globals()
for name in ['ciexyz31_1.txt','ciexyz64_1.txt','ciexyzjv.txt',
             'sbrgb2.txt','linss2_10e_1.txt']:
    k = k + 1
    name = os.path.join(os.path.dirname(__file__),name)
    afile = open(name)
    lines = afile.readlines()
    afile.close()
    wlen = []
    xl = []
    yl = []
    zl = []
    for line in lines:
        this = line.split(',')
        if this[0].strip()[0] not in '0123456789':
            break
        wlen.append(int(this[0].strip()))
        xl.append(float(this[1].strip()))
        yl.append(float(this[2].strip()))
        try:
            zl.append(float(this[3].strip()))
        except ValueError, inst:
            msg = inst.args[0]
            if msg.startswith("empty string"):
                zl.append(0.0)
            else:
                raise inst

    thisdict[varnames[k]] = (wlen,xl,yl,zl)

del thisdict, wlen, xl, yl, zl, afile, lines, this, line, k, msg, name
del varnames, inst

# XYZ white-point coordinates
#  from http://www.aim-dtp.net/aim/technology/cie_xyz/cie_xyz.htm

whitepoints = {'CIE A': ['Normal incandescent', 0.4476, 0.4074],
               'CIE B': ['Direct sunlight', 0.3457, 0.3585],
               'CIE C': ['Average sunlight', 0.3101, 0.3162],
               'CIE E': ['Normalized reference', 1.0/3, 1.0/3],
               'D50' : ['Bright tungsten', 0.3457, 0.3585],
               'D55' : ['Cloudy daylight', 0.3324, 0.3474],
               'D65' : ['Daylight', 0.312713, 0.329016],
               'D75' : ['?', 0.299, 0.3149],
               'D93' : ['low-quality old CRT', 0.2848, 0.2932]
               }
# convert to X,Y,Z white-point

def triwhite(chrwhite):
    x,y = chrwhite
    X = x / y
    Y = 1.0
    Z = (1-x-y)/y
    return X,Y,Z

for key in whitepoints.keys():
    whitepoints[key].append(triwhite(whitepoints[key][1:]))
del key


def tri2chr(tri,axis=None):
    """Convert tristimulus values to chromoticity values"""
    tri = np.asarray(tri)
    n = len(tri.shape)
    if axis is None:
        axis = coloraxis(tri.shape)
    slices = []
    for k in range(n):
        slices.append(slice(None))
    slices[axis] = np.newaxis
    norm = np.sum(tri,axis=axis)[slices]
    slices[axis] = slice(None,2)
    out = tri[slices]/norm
    return out


# find the lowest dimension of size 3
def coloraxis(shape):
    for k, val in enumerate(shape):
        if val == 3:
            return k
    raise ValueError, "No Color axis found."

def convert(matrix,TTT,axis=None):
    TTT = np.asarray(TTT)
    if axis is None:
        axis = coloraxis(TTT.shape)
    if (axis != 0):
        TTT = np.swapaxes(TTT,0,axis)
    oldshape = TTT.shape
    TTT = np.reshape(TTT,(3,-1))
    OUT = np.dot(matrix, TTT)
    OUT.shape = oldshape
    if (axis != 0):
        OUT = np.swapaxes(OUT,axis,0)
    return OUT

def xyz2rgbcie(xyz,axis=None):
    return convert(rgbcie_from_xyz, xyz, axis)

def xyz2rgb(xyz,axis=None):
    return convert(rgb_from_xyz, xyz, axis)

def rgb2xyz(rgb, axis=None):
    return convert(xyz_from_rgb, rgb, axis)

def makeslices(n):
    slices = []
    for k in range(n):
        slices.append(slice(None))
    return slices

def separate_colors(xyz,axis=None):
    if axis is None:
        axis = coloraxis(xyz.shape)
    n = len(xyz.shape)
    slices = makeslices(n)
    slices[axis] = 0
    x = xyz[slices]
    slices[axis] = 1
    y = xyz[slices]
    slices[axis] = 2
    z = xyz[slices]
    return x, y, z, axis

def join_colors(c1,c2,c3,axis):
    c1,c2,c3 = np.asarray(c1),np.asarray(c2),np.asarray(c3)
    newshape = c1.shape[:axis] + (1,) + c1.shape[axis:]
    c1.shape = newshape
    c2.shape = newshape
    c3.shape = newshape
    return np.concatenate((c1,c2,c3),axis=axis)

def xyz2lab(xyz, axis=None, wp=whitepoints['D65'][-1], doclip=1):
    x,y,z,axis = separate_colors(xyz,axis)
    xn,yn,zn = x/wp[0], y/wp[1], z/wp[2]
    def f(t):
        eps = 216/24389.
        kap = 24389/27.
        return np.where(t > eps,
                        np.power(t, 1.0/3),
                        (kap*t + 16.0)/116)
    fx,fy,fz = f(xn), f(yn), f(zn)
    L = 116*fy - 16
    a = 500*(fx - fy)
    b = 200*(fy - fz)
    if doclip:
        L = np.clip(L, 0.0, 100.0)
        a = np.clip(a, -500.0, 500.0)
        b = np.clip(b, -200.0, 200.0)
    return join_colors(L,a,b,axis)

def lab2xyz(lab, axis=None, wp=whitepoints['D65'][-1]):
    lab = np.asarray(lab)
    L,a,b,axis = separate_colors(lab,axis)
    fy = (L+16)/116.0
    fz = fy - b / 200.
    fx = a/500.0 + fy
    def finv(y):
        eps3 = (216/24389.)**3
        kap = 24389/27.
        return np.where(y > eps3,
                        np.power(y,3),
                        (116*y-16)/kap)
    xr, yr, zr = finv(fx), finv(fy), finv(fz)
    return join_colors(xr*wp[0],yr*wp[1],zr*wp[2],axis)

def rgb2lab(rgb):
    return xyz2lab(rgb2xyz(rgb))

def lab2rgb(lab):
    return xyz2rgb(lab2xyz(lab))

def _uv(x, y, z):
    """ The u, v formulae for CIE 1976 L*u*v* computations.
    """
    denominator = (x + 15*y + 3*z)
    zeros = (denominator == 0.0)
    denominator = np.where(zeros, 1.0, denominator)
    # I'm not entirely sure about these defaults when X=Y=Z=0.
    u_numerator = np.where(zeros, 4.0, 4*x)
    v_numerator = np.where(zeros, 9.0, 9 * y)

    return u_numerator/denominator, v_numerator/denominator

def xyz2luv(xyz, axis=None, wp=whitepoints['D65'][-1]):
    x, y, z, axis = separate_colors(xyz, axis)
    xn, yn, zn = x/wp[0], y/wp[1], z/wp[2]
    Ls = 116.0 * np.power(yn, 1./3) - 16.0
    small_mask = (y <= 0.008856*wp[1])
    Ls[small_mask] = 903.0 * y[small_mask] / wp[1]
    unp, vnp = _uv(*wp)
    up, vp = _uv(x, y, z)
    us = 13 * Ls * (up - unp)
    vs = 13 * Ls * (vp - vnp)

    return join_colors(Ls, us, vs, axis)

def luv2xyz(luv, axis=None, wp=whitepoints['D65'][-1]):
    Ls, us, vs, axis = separate_colors(luv, axis)
    unp, vnp = _uv(*wp)
    small_mask = (Ls <= 903.3 * 0.008856)
    y = wp[1] * ((Ls + 16.0) / 116.0) ** 3
    y[small_mask] = Ls * wp[1] / 903.0
    up = us / (13*Ls) + us
    vp = vs / (13*Ls) + vs
    x = 9.0 * y * up / (4.0 * vp)
    z = -x / 3.0 - 5.0 * y + 3.0 * y/vp

    return join_colors(x, y, z, axis)

def rgb2luv(rgb):
    return xyz2luv(rgb2xyz(rgb))

def luv2rgb(luv):
    return xyz2rgb(luv2xyz(luv))

#  RGB values that will be displayed on a screen are always
#  R'G'B' values.  To get the XYZ value of the color that will be
#  displayed you need a calibrated monitor with a profile
#  -- someday we should support reading and writing such profiles and
#     doing color conversion with them.
#  But, for quick-and-dirty calculation you can often assume the sR'G'B'
#   coordinate system for your computer, and so the rgbp2rgb will
#   put you in the linear coordinate system (assuming normalized to [0,1]
#   sR'G'B' coordiates)
#

# sRGB <-> sR'G'B'  equations from
#   http://www.w3.org/Graphics/Color/sRGB
#   http://www.srgb.com/basicsofsrgb.htm


# Macintosh displays are usually gamma = 1.8

# These transformations are done with normalized [0,1.0] coordinates

# when gamma is None:
#    rgb2rgbp gives the nonlinear (gamma corrected) sR'G'B' from
#       linear sRGB values
#    approximately the same as rgb**(1.0/2.2)
# otherwise do a simple gamma calculation
#    rgbp = rgb**(1.0/gamma)

def rgb2rgbp(rgb,gamma=None):
    rgb = np.asarray(rgb)
    if gamma is None:
        eps = 0.0031308
        return np.where(rgb < eps, 12.92*rgb,
                     1.055*rgb**(1.0/2.4) - 0.055)
    else:
        return rgb**(1.0/gamma)

# when gamma is None:
#     rgbp2rgb gives linear sRGB values from nonlinear sR'G'B' values
#     approximately the same as rgbp**2.2
# otherwise do a simple gamma coorection
#     rgb = rgbp**gamma
#
def rgbp2rgb(rgbp,gamma=None):
    rgbp = np.asarray(rgbp)
    if gamma is None:
        eps = 0.04045
        return np.where(rgbp <= eps, rgbp / 12.92,
                     np.power((rgbp + 0.055)/1.055,2.4))
    else:
        return rgbp**gamma

# The Y'CbCr coordinate system is useful because
#
# Y'CbCr information from here
#  http://www.mir.com/DMG/ycbcr.html
# This transforms from rgbp coordinates to normalized
#  y' cb cr coordinates  y' in [0,1], cb and cr in [-0.5,0.5]
#
# To convert to 8-bit use (according to the web-page cited)
#  Y' = y'*219 + 16   => [16,235]
#  Cb = cb*224 + 128  => [16,240]
#  Cr = cr*224 + 128  => [16,240]

def rgbp2ycbcr(rgbp,axis=None):
    return convert(ycbcr_from_rgbp, rgbp, axis)

def ycbcr2rgbp(ycbcr,axis=None):
    return convert(rgbp_from_ycbcr, ycbcr, axis)

def rgb2ycbcr(rgb,gamma=None,axis=None):
    return rgbp2ycbcr(rgb2rgbp(rgb,gamma),axis)

def ycbcr2rgb(ycbcr,gamma=None,axis=None):
    return rgbp2rgb(ycbcr2rgbp(ycbcr,axis),gamma)

def ycbcr_8bit(ycbcr,axis=None):
    y,cb,cr,axis = separate_colors(ycbcr,axis)
    Y = np.asarray((y*219 + 16),np.uint8)
    Cb = np.asarray((cb*224 + 128),np.uint8)
    Cr = np.asarray((cr*224 + 128),np.uint8)
    return join_colors(Y,Cb,Cr,axis)

def ycbcr_norm(YCbCr,axis=None):
    Y,Cb,Cr,axis = separate_colors(YCbCr,axis)
    y = (Y-16.)/219
    cb = (Cb-128.)/224
    cr = (Cr-128.)/224
    return join_colors(y,cb,cr,axis)