1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
|
"""
Pure SciPy implementation of Locally Optimal Block Preconditioned Conjugate
Gradient Method (LOBPCG), see
http://www-math.cudenver.edu/~aknyazev/software/BLOPEX/
License: BSD
Depends upon symeig (http://mdp-toolkit.sourceforge.net/symeig.html) for the
moment, as the symmetric eigenvalue solvers were not available in scipy.
(c) Robert Cimrman, Andrew Knyazev
Examples in tests directory contributed by Nils Wagner.
"""
import numpy as nm
import scipy as sc
import scipy.sparse as sp
import scipy.linalg as la
import scipy.io as io
import types
from symeig import symeig
def pause():
raw_input()
def save( ar, fileName ):
io.write_array( fileName, ar, precision = 8 )
##
# 21.05.2007, c
def as2d( ar ):
"""
If the input array is 2D return it, if it is 1D, append a dimension,
making it a column vector.
"""
if ar.ndim == 2:
return ar
else: # Assume 1!
aux = nm.array( ar, copy = False )
aux.shape = (ar.shape[0], 1)
return aux
##
# 05.04.2007, c
# 10.04.2007
# 24.05.2007
def makeOperator( operatorInput, expectedShape ):
"""
Internal. Takes a dense numpy array or a sparse matrix or a function and
makes an operator performing matrix * vector product.
:Example:
operatorA = makeOperator( arrayA, (n, n) )
vectorB = operatorA( vectorX )
"""
class Operator( object ):
def __call__( self, vec ):
return self.call( vec )
def asMatrix( self ):
return self._asMatrix( self )
operator = Operator()
operator.obj = operatorInput
if hasattr( operatorInput, 'shape' ):
operator.shape = operatorInput.shape
operator.dtype = operatorInput.dtype
if operator.shape != expectedShape:
raise ValueError, 'bad operator shape %s != %s' \
% (expectedShape, operator.shape)
if sp.issparse( operatorInput ):
def call( vec ):
out = operator.obj * vec
if sp.issparse( out ):
out = out.toarray()
return as2d( out )
def asMatrix( op ):
return op.obj.toarray()
else:
def call( vec ):
return as2d( nm.asarray( sc.dot( operator.obj, vec ) ) )
def asMatrix( op ):
return op.obj
operator.call = call
operator._asMatrix = asMatrix
operator.kind = 'matrix'
elif isinstance( operatorInput, types.FunctionType ) or \
isinstance( operatorInput, types.BuiltinFunctionType ):
operator.shape = expectedShape
operator.dtype = nm.float64
operator.call = operatorInput
operator.kind = 'function'
return operator
##
# 05.04.2007, c
def applyConstraints( blockVectorV, factYBY, blockVectorBY, blockVectorY ):
"""Internal. Changes blockVectorV in place."""
gramYBV = sc.dot( blockVectorBY.T, blockVectorV )
tmp = la.cho_solve( factYBY, gramYBV )
blockVectorV -= sc.dot( blockVectorY, tmp )
##
# 05.04.2007, c
def b_orthonormalize( operatorB, blockVectorV,
blockVectorBV = None, retInvR = False ):
"""Internal."""
if blockVectorBV is None:
if operatorB is not None:
blockVectorBV = operatorB( blockVectorV )
else:
blockVectorBV = blockVectorV # Shared data!!!
gramVBV = sc.dot( blockVectorV.T, blockVectorBV )
gramVBV = la.cholesky( gramVBV )
la.inv( gramVBV, overwrite_a = True )
# gramVBV is now R^{-1}.
blockVectorV = sc.dot( blockVectorV, gramVBV )
if operatorB is not None:
blockVectorBV = sc.dot( blockVectorBV, gramVBV )
if retInvR:
return blockVectorV, blockVectorBV, gramVBV
else:
return blockVectorV, blockVectorBV
##
# 04.04.2007, c
# 05.04.2007
# 06.04.2007
# 10.04.2007
# 24.05.2007
def lobpcg( blockVectorX, operatorA,
operatorB = None, operatorT = None, blockVectorY = None,
residualTolerance = None, maxIterations = 20,
largest = True, verbosityLevel = 0,
retLambdaHistory = False, retResidualNormsHistory = False ):
"""
LOBPCG solves symmetric partial eigenproblems using preconditioning.
Required input:
blockVectorX - initial approximation to eigenvectors, full or sparse matrix
n-by-blockSize
operatorA - the operator of the problem, can be given as a matrix or as an
M-file
Optional input:
operatorB - the second operator, if solving a generalized eigenproblem; by
default, or if empty, operatorB = I.
operatorT - preconditioner; by default, operatorT = I.
Optional constraints input:
blockVectorY - n-by-sizeY matrix of constraints, sizeY < n. The iterations
will be performed in the (operatorB-) orthogonal complement of the
column-space of blockVectorY. blockVectorY must be full rank.
Optional scalar input parameters:
residualTolerance - tolerance, by default, residualTolerance=n*sqrt(eps)
maxIterations - max number of iterations, by default, maxIterations =
min(n,20)
largest - when true, solve for the largest eigenvalues, otherwise for the
smallest
verbosityLevel - by default, verbosityLevel = 0.
retLambdaHistory - return eigenvalue history
retResidualNormsHistory - return history of residual norms
Output:
blockVectorX and lambda are computed blockSize eigenpairs, where
blockSize=size(blockVectorX,2) for the initial guess blockVectorX if it is
full rank.
If both retLambdaHistory and retResidualNormsHistory are True, the
return tuple has the flollowing order:
lambda, blockVectorX, lambda history, residual norms history
"""
failureFlag = True
if blockVectorY is not None:
sizeY = blockVectorY.shape[1]
else:
sizeY = 0
# Block size.
n, sizeX = blockVectorX.shape
if sizeX > n:
raise ValueError,\
'the first input argument blockVectorX must be tall, not fat' +\
' (%d, %d)' % blockVectorX.shape
if n < 1:
raise ValueError,\
'the matrix size is wrong (%d)' % n
operatorA = makeOperator( operatorA, (n, n) )
if operatorB is not None:
operatorB = makeOperator( operatorB, (n, n) )
if (n - sizeY) < (5 * sizeX):
print 'The problem size is too small, compared to the block size, for LOBPCG to run.'
print 'Trying to use symeig instead, without preconditioning.'
if blockVectorY is not None:
print 'symeig does not support constraints'
raise ValueError
if largest:
lohi = (n - sizeX, n)
else:
lohi = (1, sizeX)
if operatorA.kind == 'function':
print 'symeig does not support matrix A given by function'
if operatorB is not None:
if operatorB.kind == 'function':
print 'symeig does not support matrix B given by function'
_lambda, eigBlockVector = symeig( operatorA.asMatrix(),
operatorB.asMatrix(),
range = lohi )
else:
_lambda, eigBlockVector = symeig( operatorA.asMatrix(),
range = lohi )
return _lambda, eigBlockVector
if operatorT is not None:
operatorT = makeOperator( operatorT, (n, n) )
## if n != operatorA.shape[0]:
## aux = 'The size (%d, %d) of operatorA is not the same as\n'+\
## '%d - the number of rows of blockVectorX' % operatorA.shape + (n,)
## raise ValueError, aux
## if operatorA.shape[0] != operatorA.shape[1]:
## raise ValueError, 'operatorA must be a square matrix (%d, %d)' %\
## operatorA.shape
if residualTolerance is None:
residualTolerance = nm.sqrt( 1e-15 ) * n
maxIterations = min( n, maxIterations )
if verbosityLevel:
aux = "Solving "
if operatorB is None:
aux += "standard"
else:
aux += "generalized"
aux += " eigenvalue problem with"
if operatorT is None:
aux += "out"
aux += " preconditioning\n\n"
aux += "matrix size %d\n" % n
aux += "block size %d\n\n" % sizeX
if blockVectorY is None:
aux += "No constraints\n\n"
else:
if sizeY > 1:
aux += "%d constraints\n\n" % sizeY
else:
aux += "%d constraint\n\n" % sizeY
print aux
##
# Apply constraints to X.
if blockVectorY is not None:
if operatorB is not None:
blockVectorBY = operatorB( blockVectorY )
else:
blockVectorBY = blockVectorY
# gramYBY is a dense array.
gramYBY = sc.dot( blockVectorY.T, blockVectorBY )
try:
# gramYBY is a Cholesky factor from now on...
gramYBY = la.cho_factor( gramYBY )
except:
print 'cannot handle linear dependent constraints'
raise
applyConstraints( blockVectorX, gramYBY, blockVectorBY, blockVectorY )
##
# B-orthonormalize X.
blockVectorX, blockVectorBX = b_orthonormalize( operatorB, blockVectorX )
##
# Compute the initial Ritz vectors: solve the eigenproblem.
blockVectorAX = operatorA( blockVectorX )
gramXAX = sc.dot( blockVectorX.T, blockVectorAX )
# gramXBX is X^T * X.
gramXBX = sc.dot( blockVectorX.T, blockVectorX )
_lambda, eigBlockVector = symeig( gramXAX )
ii = nm.argsort( _lambda )[:sizeX]
if largest:
ii = ii[::-1]
_lambda = _lambda[ii]
eigBlockVector = nm.asarray( eigBlockVector[:,ii] )
# pause()
blockVectorX = sc.dot( blockVectorX, eigBlockVector )
blockVectorAX = sc.dot( blockVectorAX, eigBlockVector )
if operatorB is not None:
blockVectorBX = sc.dot( blockVectorBX, eigBlockVector )
##
# Active index set.
activeMask = nm.ones( (sizeX,), dtype = nm.bool )
lambdaHistory = [_lambda]
residualNormsHistory = []
previousBlockSize = sizeX
ident = nm.eye( sizeX, dtype = operatorA.dtype )
ident0 = nm.eye( sizeX, dtype = operatorA.dtype )
##
# Main iteration loop.
for iterationNumber in xrange( maxIterations ):
if verbosityLevel > 0:
print 'iteration %d' % iterationNumber
aux = blockVectorBX * _lambda[nm.newaxis,:]
blockVectorR = blockVectorAX - aux
aux = nm.sum( blockVectorR.conjugate() * blockVectorR, 0 )
residualNorms = nm.sqrt( aux )
## if iterationNumber == 2:
## print blockVectorAX
## print blockVectorBX
## print blockVectorR
## pause()
residualNormsHistory.append( residualNorms )
ii = nm.where( residualNorms > residualTolerance, True, False )
activeMask = activeMask & ii
if verbosityLevel > 2:
print activeMask
currentBlockSize = activeMask.sum()
if currentBlockSize != previousBlockSize:
previousBlockSize = currentBlockSize
ident = nm.eye( currentBlockSize, dtype = operatorA.dtype )
if currentBlockSize == 0:
failureFlag = False # All eigenpairs converged.
break
if verbosityLevel > 0:
print 'current block size:', currentBlockSize
print 'eigenvalue:', _lambda
print 'residual norms:', residualNorms
if verbosityLevel > 10:
print eigBlockVector
activeBlockVectorR = as2d( blockVectorR[:,activeMask] )
if iterationNumber > 0:
activeBlockVectorP = as2d( blockVectorP[:,activeMask] )
activeBlockVectorAP = as2d( blockVectorAP[:,activeMask] )
activeBlockVectorBP = as2d( blockVectorBP[:,activeMask] )
# print activeBlockVectorR
if operatorT is not None:
##
# Apply preconditioner T to the active residuals.
activeBlockVectorR = operatorT( activeBlockVectorR )
# assert nm.all( blockVectorR == activeBlockVectorR )
##
# Apply constraints to the preconditioned residuals.
if blockVectorY is not None:
applyConstraints( activeBlockVectorR,
gramYBY, blockVectorBY, blockVectorY )
# assert nm.all( blockVectorR == activeBlockVectorR )
##
# B-orthonormalize the preconditioned residuals.
# print activeBlockVectorR
aux = b_orthonormalize( operatorB, activeBlockVectorR )
activeBlockVectorR, activeBlockVectorBR = aux
# print activeBlockVectorR
activeBlockVectorAR = operatorA( activeBlockVectorR )
if iterationNumber > 0:
aux = b_orthonormalize( operatorB, activeBlockVectorP,
activeBlockVectorBP, retInvR = True )
activeBlockVectorP, activeBlockVectorBP, invR = aux
activeBlockVectorAP = sc.dot( activeBlockVectorAP, invR )
##
# Perform the Rayleigh Ritz Procedure:
# Compute symmetric Gram matrices:
xaw = sc.dot( blockVectorX.T, activeBlockVectorAR )
waw = sc.dot( activeBlockVectorR.T, activeBlockVectorAR )
xbw = sc.dot( blockVectorX.T, activeBlockVectorBR )
if iterationNumber > 0:
xap = sc.dot( blockVectorX.T, activeBlockVectorAP )
wap = sc.dot( activeBlockVectorR.T, activeBlockVectorAP )
pap = sc.dot( activeBlockVectorP.T, activeBlockVectorAP )
xbp = sc.dot( blockVectorX.T, activeBlockVectorBP )
wbp = sc.dot( activeBlockVectorR.T, activeBlockVectorBP )
gramA = nm.bmat( [[nm.diag( _lambda ), xaw, xap],
[xaw.T, waw, wap],
[xap.T, wap.T, pap]] )
try:
gramB = nm.bmat( [[ident0, xbw, xbp],
[xbw.T, ident, wbp],
[xbp.T, wbp.T, ident]] )
except:
print ident
print xbw
raise
else:
gramA = nm.bmat( [[nm.diag( _lambda ), xaw],
[xaw.T, waw]] )
gramB = nm.bmat( [[ident0, xbw],
[xbw.T, ident0]] )
try:
assert nm.allclose( gramA.T, gramA )
except:
print gramA.T - gramA
raise
try:
assert nm.allclose( gramB.T, gramB )
except:
print gramB.T - gramB
raise
## print nm.diag( _lambda )
## print xaw
## print waw
## print xbw
## try:
## print xap
## print wap
## print pap
## print xbp
## print wbp
## except:
## pass
## pause()
if verbosityLevel > 10:
save( gramA, 'gramA' )
save( gramB, 'gramB' )
##
# Solve the generalized eigenvalue problem.
# _lambda, eigBlockVector = la.eig( gramA, gramB )
_lambda, eigBlockVector = symeig( gramA, gramB )
ii = nm.argsort( _lambda )[:sizeX]
if largest:
ii = ii[::-1]
if verbosityLevel > 10:
print ii
_lambda = _lambda[ii].astype( nm.float64 )
eigBlockVector = nm.asarray( eigBlockVector[:,ii].astype( nm.float64 ) )
lambdaHistory.append( _lambda )
if verbosityLevel > 10:
print 'lambda:', _lambda
## # Normalize eigenvectors!
## aux = nm.sum( eigBlockVector.conjugate() * eigBlockVector, 0 )
## eigVecNorms = nm.sqrt( aux )
## eigBlockVector = eigBlockVector / eigVecNorms[nm.newaxis,:]
# eigBlockVector, aux = b_orthonormalize( operatorB, eigBlockVector )
if verbosityLevel > 10:
print eigBlockVector
pause()
##
# Compute Ritz vectors.
if iterationNumber > 0:
eigBlockVectorX = eigBlockVector[:sizeX]
eigBlockVectorR = eigBlockVector[sizeX:sizeX+currentBlockSize]
eigBlockVectorP = eigBlockVector[sizeX+currentBlockSize:]
pp = sc.dot( activeBlockVectorR, eigBlockVectorR )\
+ sc.dot( activeBlockVectorP, eigBlockVectorP )
app = sc.dot( activeBlockVectorAR, eigBlockVectorR )\
+ sc.dot( activeBlockVectorAP, eigBlockVectorP )
bpp = sc.dot( activeBlockVectorBR, eigBlockVectorR )\
+ sc.dot( activeBlockVectorBP, eigBlockVectorP )
else:
eigBlockVectorX = eigBlockVector[:sizeX]
eigBlockVectorR = eigBlockVector[sizeX:]
pp = sc.dot( activeBlockVectorR, eigBlockVectorR )
app = sc.dot( activeBlockVectorAR, eigBlockVectorR )
bpp = sc.dot( activeBlockVectorBR, eigBlockVectorR )
if verbosityLevel > 10:
print pp
print app
print bpp
pause()
# print pp.shape, app.shape, bpp.shape
blockVectorX = sc.dot( blockVectorX, eigBlockVectorX ) + pp
blockVectorAX = sc.dot( blockVectorAX, eigBlockVectorX ) + app
blockVectorBX = sc.dot( blockVectorBX, eigBlockVectorX ) + bpp
blockVectorP, blockVectorAP, blockVectorBP = pp, app, bpp
aux = blockVectorBX * _lambda[nm.newaxis,:]
blockVectorR = blockVectorAX - aux
aux = nm.sum( blockVectorR.conjugate() * blockVectorR, 0 )
residualNorms = nm.sqrt( aux )
if verbosityLevel > 0:
print 'final eigenvalue:', _lambda
print 'final residual norms:', residualNorms
if retLambdaHistory:
if retResidualNormsHistory:
return _lambda, blockVectorX, lambdaHistory, residualNormsHistory
else:
return _lambda, blockVectorX, lambdaHistory
else:
if retResidualNormsHistory:
return _lambda, blockVectorX, residualNormsHistory
else:
return _lambda, blockVectorX
###########################################################################
if __name__ == '__main__':
from scipy.sparse import spdiags, speye
import time
## def operatorB( vec ):
## return vec
n = 100
vals = [nm.arange( n, dtype = nm.float64 ) + 1]
operatorA = spdiags( vals, 0, n, n )
operatorB = speye( n, n )
# operatorB[0,0] = 0
operatorB = nm.eye( n, n )
Y = nm.eye( n, 3 )
# X = sc.rand( n, 3 )
xfile = {100 : 'X.txt', 1000 : 'X2.txt', 10000 : 'X3.txt'}
X = nm.fromfile( xfile[n], dtype = nm.float64, sep = ' ' )
X.shape = (n, 3)
ivals = [1./vals[0]]
def precond( x ):
invA = spdiags( ivals, 0, n, n )
y = invA * x
if sp.issparse( y ):
y = y.toarray()
return as2d( y )
# precond = spdiags( ivals, 0, n, n )
tt = time.clock()
eigs, vecs = lobpcg( X, operatorA, operatorB, blockVectorY = Y,
operatorT = precond,
residualTolerance = 1e-4, maxIterations = 40,
largest = False, verbosityLevel = 1 )
print 'solution time:', time.clock() - tt
print eigs
print vecs
|