File: lobpcg.py

package info (click to toggle)
python-scipy 0.6.0-12
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 32,016 kB
  • ctags: 46,675
  • sloc: cpp: 124,854; ansic: 110,614; python: 108,664; fortran: 76,260; objc: 424; makefile: 384; sh: 10
file content (603 lines) | stat: -rw-r--r-- 19,448 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
"""
Pure SciPy implementation of Locally Optimal Block Preconditioned Conjugate
Gradient Method (LOBPCG), see
http://www-math.cudenver.edu/~aknyazev/software/BLOPEX/

License: BSD

Depends upon symeig (http://mdp-toolkit.sourceforge.net/symeig.html) for the
moment, as the symmetric eigenvalue solvers were not available in scipy.

(c) Robert Cimrman, Andrew Knyazev

Examples in tests directory contributed by Nils Wagner.
"""

import numpy as nm
import scipy as sc
import scipy.sparse as sp
import scipy.linalg as la
import scipy.io as io
import types
from symeig import symeig

def pause():
    raw_input()

def save( ar, fileName ):
    io.write_array( fileName, ar, precision = 8 )

##
# 21.05.2007, c
def as2d( ar ):
    """
    If the input array is 2D return it, if it is 1D, append a dimension,
    making it a column vector.
    """
    if ar.ndim == 2:
        return ar
    else: # Assume 1!
        aux = nm.array( ar, copy = False )
        aux.shape = (ar.shape[0], 1)
        return aux

##
# 05.04.2007, c
# 10.04.2007
# 24.05.2007
def makeOperator( operatorInput, expectedShape ):
    """
    Internal. Takes a dense numpy array or a sparse matrix or a function and
    makes an operator performing matrix * vector product.

    :Example:

    operatorA = makeOperator( arrayA, (n, n) )
    vectorB = operatorA( vectorX )
    """
    class Operator( object ):
        def __call__( self, vec ):
            return self.call( vec )
        def asMatrix( self ):
            return self._asMatrix( self )
        
    operator = Operator()
    operator.obj = operatorInput
    
    if hasattr( operatorInput, 'shape' ):
        operator.shape = operatorInput.shape
        operator.dtype = operatorInput.dtype
        if operator.shape != expectedShape:
            raise ValueError, 'bad operator shape %s != %s' \
                  % (expectedShape, operator.shape)
        if sp.issparse( operatorInput ):
            def call( vec ):
                out = operator.obj * vec
                if sp.issparse( out ):
                    out = out.toarray()
                return as2d( out )
            def asMatrix( op ):
                return op.obj.toarray()
        else:
            def call( vec ):
                return as2d( nm.asarray( sc.dot( operator.obj, vec ) ) )
            def asMatrix( op ):
                return op.obj
        operator.call = call
        operator._asMatrix = asMatrix
        operator.kind = 'matrix'

    elif isinstance( operatorInput, types.FunctionType ) or \
         isinstance( operatorInput, types.BuiltinFunctionType ):
        operator.shape = expectedShape
        operator.dtype = nm.float64
        operator.call = operatorInput
        operator.kind = 'function'

    return operator

##
# 05.04.2007, c
def applyConstraints( blockVectorV, factYBY, blockVectorBY, blockVectorY ):
    """Internal. Changes blockVectorV in place."""
    gramYBV = sc.dot( blockVectorBY.T, blockVectorV )
    tmp = la.cho_solve( factYBY, gramYBV )
    blockVectorV -= sc.dot( blockVectorY, tmp )

##
# 05.04.2007, c
def b_orthonormalize( operatorB, blockVectorV,
                      blockVectorBV = None, retInvR = False ):
    """Internal."""
    if blockVectorBV is None:
        if operatorB is not None:
            blockVectorBV = operatorB( blockVectorV )
        else:
            blockVectorBV = blockVectorV # Shared data!!!
    gramVBV = sc.dot( blockVectorV.T, blockVectorBV )
    gramVBV = la.cholesky( gramVBV )
    la.inv( gramVBV, overwrite_a = True )
    # gramVBV is now R^{-1}.
    blockVectorV = sc.dot( blockVectorV, gramVBV )
    if operatorB is not None:
        blockVectorBV = sc.dot( blockVectorBV, gramVBV )

    if retInvR:
        return blockVectorV, blockVectorBV, gramVBV
    else:
        return blockVectorV, blockVectorBV

##
# 04.04.2007, c
# 05.04.2007
# 06.04.2007
# 10.04.2007
# 24.05.2007
def lobpcg( blockVectorX, operatorA,
            operatorB = None, operatorT = None, blockVectorY = None,
            residualTolerance = None, maxIterations = 20,
            largest = True, verbosityLevel = 0,
            retLambdaHistory = False, retResidualNormsHistory = False ):
    """
    LOBPCG solves symmetric partial eigenproblems using preconditioning.

    Required input: 

    blockVectorX - initial approximation to eigenvectors, full or sparse matrix
    n-by-blockSize

    operatorA - the operator of the problem, can be given as a matrix or as an
    M-file


    Optional input:

    operatorB - the second operator, if solving a generalized eigenproblem; by
    default, or if empty, operatorB = I.

    operatorT - preconditioner; by default, operatorT = I.


    Optional constraints input:

    blockVectorY - n-by-sizeY matrix of constraints, sizeY < n.  The iterations
    will be performed in the (operatorB-) orthogonal complement of the
    column-space of blockVectorY. blockVectorY must be full rank.


    Optional scalar input parameters:

    residualTolerance - tolerance, by default, residualTolerance=n*sqrt(eps)

    maxIterations - max number of iterations, by default, maxIterations =
    min(n,20)

    largest - when true, solve for the largest eigenvalues, otherwise for the
    smallest

    verbosityLevel - by default, verbosityLevel = 0.

    retLambdaHistory - return eigenvalue history

    retResidualNormsHistory - return history of residual norms

    Output:

    blockVectorX and lambda are computed blockSize eigenpairs, where
    blockSize=size(blockVectorX,2) for the initial guess blockVectorX if it is
    full rank.

    If both retLambdaHistory and retResidualNormsHistory are True, the
    return tuple has the flollowing order:

    lambda, blockVectorX, lambda history, residual norms history
    """
    failureFlag = True

    if blockVectorY is not None:
        sizeY = blockVectorY.shape[1]
    else:
        sizeY = 0

    # Block size.
    n, sizeX = blockVectorX.shape
    if sizeX > n:
        raise ValueError,\
              'the first input argument blockVectorX must be tall, not fat' +\
              ' (%d, %d)' % blockVectorX.shape

    if n < 1:
        raise ValueError,\
              'the matrix size is wrong (%d)' % n
        
    operatorA = makeOperator( operatorA, (n, n) )

    if operatorB is not None:
        operatorB = makeOperator( operatorB, (n, n) )

    if (n - sizeY) < (5 * sizeX):
        print 'The problem size is too small, compared to the block size,  for LOBPCG to run.'
        print 'Trying to use symeig instead, without preconditioning.'
        if blockVectorY is not None:
            print 'symeig does not support constraints'
            raise ValueError

        if largest:
            lohi = (n - sizeX, n)
        else:
            lohi = (1, sizeX)

        if operatorA.kind == 'function':
            print 'symeig does not support matrix A given by function'

        if operatorB is not None:
            if operatorB.kind == 'function':
                print 'symeig does not support matrix B given by function'

            _lambda, eigBlockVector = symeig( operatorA.asMatrix(),
                                              operatorB.asMatrix(),
                                              range = lohi )
        else:
            _lambda, eigBlockVector = symeig( operatorA.asMatrix(),
                                              range = lohi )
        return _lambda, eigBlockVector

    if operatorT is not None:
        operatorT = makeOperator( operatorT, (n, n) )
##     if n != operatorA.shape[0]:
##         aux = 'The size (%d, %d) of operatorA is not the same as\n'+\
##               '%d - the number of rows of blockVectorX' % operatorA.shape + (n,)
##         raise ValueError, aux

##     if operatorA.shape[0] != operatorA.shape[1]:
##         raise ValueError, 'operatorA must be a square matrix (%d, %d)' %\
##               operatorA.shape

    if residualTolerance is None:
        residualTolerance = nm.sqrt( 1e-15 ) * n

    maxIterations = min( n, maxIterations )

    if verbosityLevel:
        aux = "Solving "
        if operatorB is None:
            aux += "standard"
        else:
            aux += "generalized"
        aux += " eigenvalue problem with"
        if operatorT is None:
            aux += "out"
        aux += " preconditioning\n\n"
        aux += "matrix size %d\n" % n
        aux += "block size %d\n\n" % sizeX
        if blockVectorY is None:
            aux += "No constraints\n\n"
        else:
            if sizeY > 1:
                aux += "%d constraints\n\n" % sizeY
            else:
                aux += "%d constraint\n\n" % sizeY
        print aux

    ##
    # Apply constraints to X.
    if blockVectorY is not None:

        if operatorB is not None:
            blockVectorBY = operatorB( blockVectorY )
        else:
            blockVectorBY = blockVectorY
    
        # gramYBY is a dense array.
        gramYBY = sc.dot( blockVectorY.T, blockVectorBY )
        try:
            # gramYBY is a Cholesky factor from now on...
            gramYBY = la.cho_factor( gramYBY )
        except:
            print 'cannot handle linear dependent constraints'
            raise

        applyConstraints( blockVectorX, gramYBY, blockVectorBY, blockVectorY )

    ##
    # B-orthonormalize X.
    blockVectorX, blockVectorBX = b_orthonormalize( operatorB, blockVectorX )

    ##
    # Compute the initial Ritz vectors: solve the eigenproblem.
    blockVectorAX = operatorA( blockVectorX )
    gramXAX = sc.dot( blockVectorX.T, blockVectorAX )
    # gramXBX is X^T * X.
    gramXBX = sc.dot( blockVectorX.T, blockVectorX )
    _lambda, eigBlockVector = symeig( gramXAX )
    ii = nm.argsort( _lambda )[:sizeX]
    if largest:
        ii = ii[::-1]
    _lambda = _lambda[ii]
    eigBlockVector = nm.asarray( eigBlockVector[:,ii] )
#    pause()
    blockVectorX = sc.dot( blockVectorX, eigBlockVector )
    blockVectorAX = sc.dot( blockVectorAX, eigBlockVector )
    if operatorB is not None:
        blockVectorBX = sc.dot( blockVectorBX, eigBlockVector )
    
    ##
    # Active index set.
    activeMask = nm.ones( (sizeX,), dtype = nm.bool )

    lambdaHistory = [_lambda]
    residualNormsHistory = []

    previousBlockSize = sizeX
    ident = nm.eye( sizeX, dtype = operatorA.dtype )
    ident0 = nm.eye( sizeX, dtype = operatorA.dtype )
    
    ##
    # Main iteration loop.
    for iterationNumber in xrange( maxIterations ):
        if verbosityLevel > 0:
            print 'iteration %d' %  iterationNumber

        aux = blockVectorBX * _lambda[nm.newaxis,:]
        blockVectorR = blockVectorAX - aux

        aux = nm.sum( blockVectorR.conjugate() * blockVectorR, 0 )
        residualNorms = nm.sqrt( aux )

        
##         if iterationNumber == 2:
##             print blockVectorAX
##             print blockVectorBX
##             print blockVectorR
##             pause()

        residualNormsHistory.append( residualNorms )

        ii = nm.where( residualNorms > residualTolerance, True, False )
        activeMask = activeMask & ii
        if verbosityLevel > 2:
            print activeMask

        currentBlockSize = activeMask.sum()
        if currentBlockSize != previousBlockSize:
            previousBlockSize = currentBlockSize
            ident = nm.eye( currentBlockSize, dtype = operatorA.dtype )

        if currentBlockSize == 0:
            failureFlag = False # All eigenpairs converged.
            break

        if verbosityLevel > 0:
            print 'current block size:', currentBlockSize
            print 'eigenvalue:', _lambda
            print 'residual norms:', residualNorms
        if verbosityLevel > 10:
            print eigBlockVector

        activeBlockVectorR = as2d( blockVectorR[:,activeMask] )
        
        if iterationNumber > 0:
            activeBlockVectorP = as2d( blockVectorP[:,activeMask] )
            activeBlockVectorAP = as2d( blockVectorAP[:,activeMask] )
            activeBlockVectorBP = as2d( blockVectorBP[:,activeMask] )

#        print activeBlockVectorR
        if operatorT is not None:
            ##
            # Apply preconditioner T to the active residuals.
            activeBlockVectorR = operatorT( activeBlockVectorR )

#        assert nm.all( blockVectorR == activeBlockVectorR )

        ##
        # Apply constraints to the preconditioned residuals.
        if blockVectorY is not None:
            applyConstraints( activeBlockVectorR,
                              gramYBY, blockVectorBY, blockVectorY )

#        assert nm.all( blockVectorR == activeBlockVectorR )

        ##
        # B-orthonormalize the preconditioned residuals.
#        print activeBlockVectorR

        aux = b_orthonormalize( operatorB, activeBlockVectorR )
        activeBlockVectorR, activeBlockVectorBR = aux
#        print activeBlockVectorR

        activeBlockVectorAR = operatorA( activeBlockVectorR )

        if iterationNumber > 0:
            aux = b_orthonormalize( operatorB, activeBlockVectorP,
                                    activeBlockVectorBP, retInvR = True )
            activeBlockVectorP, activeBlockVectorBP, invR = aux
            activeBlockVectorAP = sc.dot( activeBlockVectorAP, invR )

        ##
        # Perform the Rayleigh Ritz Procedure:
        # Compute symmetric Gram matrices:

        xaw = sc.dot( blockVectorX.T, activeBlockVectorAR )
        waw = sc.dot( activeBlockVectorR.T, activeBlockVectorAR )
        xbw = sc.dot( blockVectorX.T, activeBlockVectorBR )
        
        if iterationNumber > 0:
            xap = sc.dot( blockVectorX.T, activeBlockVectorAP )
            wap = sc.dot( activeBlockVectorR.T, activeBlockVectorAP )
            pap = sc.dot( activeBlockVectorP.T, activeBlockVectorAP )
            xbp = sc.dot( blockVectorX.T, activeBlockVectorBP )
            wbp = sc.dot( activeBlockVectorR.T, activeBlockVectorBP )
            
            gramA = nm.bmat( [[nm.diag( _lambda ), xaw, xap],
                              [xaw.T, waw, wap],
                              [xap.T, wap.T, pap]] )
            try:
                gramB = nm.bmat( [[ident0, xbw, xbp],
                                  [xbw.T, ident, wbp],
                                  [xbp.T, wbp.T, ident]] )
            except:
                print ident
                print xbw
                raise
        else:
            gramA = nm.bmat( [[nm.diag( _lambda ), xaw],
                              [xaw.T, waw]] )
            gramB = nm.bmat( [[ident0, xbw],
                              [xbw.T, ident0]] )
        try:
            assert nm.allclose( gramA.T, gramA )
        except:
            print gramA.T - gramA
            raise

        try:
            assert nm.allclose( gramB.T, gramB )
        except:
            print gramB.T - gramB
            raise

##         print nm.diag( _lambda )
##         print xaw
##         print waw
##         print xbw
##         try:
##             print xap
##             print wap
##             print pap
##             print xbp
##             print wbp
##         except:
##             pass
##         pause()

        if verbosityLevel > 10:
            save( gramA, 'gramA' )
            save( gramB, 'gramB' )
        ##
        # Solve the generalized eigenvalue problem.
#        _lambda, eigBlockVector = la.eig( gramA, gramB )
        _lambda, eigBlockVector = symeig( gramA, gramB )
        ii = nm.argsort( _lambda )[:sizeX]
        if largest:
            ii = ii[::-1]
        if verbosityLevel > 10:
            print ii
        
        _lambda = _lambda[ii].astype( nm.float64 )
        eigBlockVector = nm.asarray( eigBlockVector[:,ii].astype( nm.float64 ) )

        lambdaHistory.append( _lambda )

        if verbosityLevel > 10:
            print 'lambda:', _lambda
##         # Normalize eigenvectors!
##         aux = nm.sum( eigBlockVector.conjugate() * eigBlockVector, 0 )
##         eigVecNorms = nm.sqrt( aux )
##         eigBlockVector = eigBlockVector / eigVecNorms[nm.newaxis,:]
#        eigBlockVector, aux = b_orthonormalize( operatorB, eigBlockVector )

        if verbosityLevel > 10:
            print eigBlockVector
            pause()
        ##
        # Compute Ritz vectors.
        if iterationNumber > 0:
            eigBlockVectorX = eigBlockVector[:sizeX]
            eigBlockVectorR = eigBlockVector[sizeX:sizeX+currentBlockSize]
            eigBlockVectorP = eigBlockVector[sizeX+currentBlockSize:]

            pp = sc.dot( activeBlockVectorR, eigBlockVectorR )\
                 + sc.dot( activeBlockVectorP, eigBlockVectorP )

            app = sc.dot( activeBlockVectorAR, eigBlockVectorR )\
                  + sc.dot( activeBlockVectorAP, eigBlockVectorP )

            bpp = sc.dot( activeBlockVectorBR, eigBlockVectorR )\
                  + sc.dot( activeBlockVectorBP, eigBlockVectorP )
        else:
            eigBlockVectorX = eigBlockVector[:sizeX]
            eigBlockVectorR = eigBlockVector[sizeX:]

            pp = sc.dot( activeBlockVectorR, eigBlockVectorR )

            app = sc.dot( activeBlockVectorAR, eigBlockVectorR )

            bpp = sc.dot( activeBlockVectorBR, eigBlockVectorR )

        if verbosityLevel > 10:
            print pp
            print app
            print bpp
            pause()
#        print pp.shape, app.shape, bpp.shape

        blockVectorX = sc.dot( blockVectorX, eigBlockVectorX ) + pp
        blockVectorAX = sc.dot( blockVectorAX, eigBlockVectorX ) + app
        blockVectorBX = sc.dot( blockVectorBX, eigBlockVectorX ) + bpp

        blockVectorP, blockVectorAP, blockVectorBP = pp, app, bpp
        
    aux = blockVectorBX * _lambda[nm.newaxis,:]
    blockVectorR = blockVectorAX - aux

    aux = nm.sum( blockVectorR.conjugate() * blockVectorR, 0 )
    residualNorms = nm.sqrt( aux )


    if verbosityLevel > 0:
        print 'final eigenvalue:', _lambda
        print 'final residual norms:', residualNorms

    if retLambdaHistory:
        if retResidualNormsHistory:
            return _lambda, blockVectorX, lambdaHistory, residualNormsHistory
        else:
            return _lambda, blockVectorX, lambdaHistory
    else:
        if retResidualNormsHistory:
            return _lambda, blockVectorX, residualNormsHistory
        else:
            return _lambda, blockVectorX

###########################################################################
if __name__ == '__main__':
    from scipy.sparse import spdiags, speye
    import time

##     def operatorB( vec ):
##         return vec

    n = 100
    vals = [nm.arange( n, dtype = nm.float64 ) + 1]
    operatorA = spdiags( vals, 0, n, n )
    operatorB = speye( n, n )
#    operatorB[0,0] = 0
    operatorB = nm.eye( n, n )
    Y = nm.eye( n, 3 )


#    X = sc.rand( n, 3 )
    xfile = {100 : 'X.txt', 1000 : 'X2.txt', 10000 : 'X3.txt'}
    X = nm.fromfile( xfile[n], dtype = nm.float64, sep = ' ' )
    X.shape = (n, 3)

    ivals = [1./vals[0]]
    def precond( x ):
        invA = spdiags( ivals, 0, n, n )
        y = invA  * x
        if sp.issparse( y ):
            y = y.toarray()

        return as2d( y )

#    precond = spdiags( ivals, 0, n, n )

    tt = time.clock()
    eigs, vecs = lobpcg( X, operatorA, operatorB, blockVectorY = Y,
                         operatorT = precond,
                         residualTolerance = 1e-4, maxIterations = 40,
                         largest = False, verbosityLevel = 1 )
    print 'solution time:', time.clock() - tt
    print eigs
    
    print vecs