1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
|
# pylint: disable-msg=E1002
"""MA: a facility for dealing with missing observations
MA is generally used as a numpy.array look-alike.
by Paul F. Dubois.
Copyright 1999, 2000, 2001 Regents of the University of California.
Released for unlimited redistribution.
Adapted for numpy_core 2005 by Travis Oliphant and
(mainly) Paul Dubois.
Subclassing of the base ndarray 2006 by Pierre Gerard-Marchant.
pgmdevlist_AT_gmail_DOT_com
Improvements suggested by Reggie Dugard (reggie_AT_merfinllc_DOT_com)
:author: Pierre Gerard-Marchant
:contact: pierregm_at_uga_dot_edu
:version: $Id: core_alt.py 2723 2007-02-19 05:28:52Z pierregm $
"""
__author__ = "Pierre GF Gerard-Marchant ($Author: pierregm $)"
__version__ = '1.0'
__revision__ = "$Revision: 2723 $"
__date__ = '$Date: 2007-02-18 21:28:52 -0800 (Sun, 18 Feb 2007) $'
__all__ = ['MAError', 'MaskType', 'MaskedArray',
'bool_', 'complex_', 'float_', 'int_', 'object_',
'abs', 'absolute', 'add', 'all', 'allclose', 'allequal', 'alltrue',
'amax', 'amin', 'anom', 'anomalies', 'any', 'arange',
'arccos', 'arccosh', 'arcsin', 'arcsinh', 'arctan', 'arctan2',
'arctanh', 'argmax', 'argmin', 'argsort', 'around',
'array', 'asarray',
'bitwise_and', 'bitwise_or', 'bitwise_xor',
'ceil', 'choose', 'compressed', 'concatenate', 'conjugate',
'cos', 'cosh', 'count',
'diagonal', 'divide', 'dump', 'dumps',
'empty', 'empty_like', 'equal', 'exp',
'fabs', 'fmod', 'filled', 'floor', 'floor_divide',
'getmask', 'getmaskarray', 'greater', 'greater_equal', 'hypot',
'ids', 'inner', 'innerproduct',
'isMA', 'isMaskedArray', 'is_mask', 'is_masked', 'isarray',
'left_shift', 'less', 'less_equal', 'load', 'loads', 'log', 'log10',
'logical_and', 'logical_not', 'logical_or', 'logical_xor',
'make_mask', 'make_mask_none', 'mask_or', 'masked',
'masked_array', 'masked_equal', 'masked_greater',
'masked_greater_equal', 'masked_inside', 'masked_less',
'masked_less_equal', 'masked_not_equal', 'masked_object',
'masked_outside', 'masked_print_option', 'masked_singleton',
'masked_values', 'masked_where', 'max', 'maximum', 'mean', 'min',
'minimum', 'multiply',
'negative', 'nomask', 'nonzero', 'not_equal',
'ones', 'outer', 'outerproduct',
'power', 'product', 'ptp', 'put', 'putmask',
'rank', 'ravel', 'remainder', 'repeat', 'reshape', 'resize',
'right_shift', 'round_',
'shape', 'sin', 'sinh', 'size', 'sometrue', 'sort', 'sqrt', 'std',
'subtract', 'sum', 'swapaxes',
'take', 'tan', 'tanh', 'transpose', 'true_divide',
'var', 'where',
'zeros']
import sys
import types
import cPickle
#
import numpy
from numpy import bool_, complex_, float_, int_, object_, str_
import numpy.core.umath as umath
import numpy.core.fromnumeric as fromnumeric
from numpy.core.numeric import ndarray
from numpy.core.fromnumeric import amax, amin
import numpy.core.numerictypes as ntypes
from numpy.core.numerictypes import bool_, typecodes
from numpy.core.multiarray import dtype
import numpy.core.numeric as numeric
from numpy.lib.shape_base import expand_dims as n_expand_dims
import warnings
MaskType = bool_
nomask = MaskType(0)
divide_tolerance = 1.e-35
numpy.seterr(all='ignore')
# TODO: There's still a problem with N.add.reduce not working...
# TODO: ...neither does N.add.accumulate
#####--------------------------------------------------------------------------
#---- --- Exceptions ---
#####--------------------------------------------------------------------------
class MAError(Exception):
"Class for MA related errors."
def __init__ (self, args=None):
"Creates an exception."
Exception.__init__(self,args)
self.args = args
def __str__(self):
"Calculates the string representation."
return str(self.args)
__repr__ = __str__
#####--------------------------------------------------------------------------
#---- --- Filling options ---
#####--------------------------------------------------------------------------
# b: boolean - c: complex - f: floats - i: integer - O: object - S: string
default_filler = {'b': True,
'c' : 1.e20 + 0.0j,
'f' : 1.e20,
'i' : 999999,
'O' : '?',
'S' : 'N/A',
'u' : 999999,
'V' : '???',
}
max_filler = ntypes._minvals
max_filler.update([(k,-numeric.inf) for k in [numpy.float32, numpy.float64]])
min_filler = ntypes._maxvals
min_filler.update([(k,numeric.inf) for k in [numpy.float32, numpy.float64]])
if 'float128' in ntypes.typeDict:
max_filler.update([(numpy.float128,-numeric.inf)])
min_filler.update([(numpy.float128, numeric.inf)])
def default_fill_value(obj):
"Calculates the default fill value for an object `obj`."
if hasattr(obj,'dtype'):
defval = default_filler[obj.dtype.kind]
elif isinstance(obj, numeric.dtype):
defval = default_filler[obj.kind]
elif isinstance(obj, float):
defval = default_filler['f']
elif isinstance(obj, int) or isinstance(obj, long):
defval = default_filler['i']
elif isinstance(obj, str):
defval = default_filler['S']
elif isinstance(obj, complex):
defval = default_filler['c']
else:
defval = default_filler['O']
return defval
def minimum_fill_value(obj):
"Calculates the default fill value suitable for taking the minimum of `obj`."
if hasattr(obj, 'dtype'):
objtype = obj.dtype
filler = min_filler[objtype]
if filler is None:
raise TypeError, 'Unsuitable type for calculating minimum.'
return filler
elif isinstance(obj, float):
return min_filler[ntypes.typeDict['float_']]
elif isinstance(obj, int):
return min_filler[ntypes.typeDict['int_']]
elif isinstance(obj, long):
return min_filler[ntypes.typeDict['uint']]
elif isinstance(obj, numeric.dtype):
return min_filler[obj]
else:
raise TypeError, 'Unsuitable type for calculating minimum.'
def maximum_fill_value(obj):
"Calculates the default fill value suitable for taking the maximum of `obj`."
if hasattr(obj, 'dtype'):
objtype = obj.dtype
filler = max_filler[objtype]
if filler is None:
raise TypeError, 'Unsuitable type for calculating minimum.'
return filler
elif isinstance(obj, float):
return max_filler[ntypes.typeDict['float_']]
elif isinstance(obj, int):
return max_filler[ntypes.typeDict['int_']]
elif isinstance(obj, long):
return max_filler[ntypes.typeDict['uint']]
elif isinstance(obj, numeric.dtype):
return max_filler[obj]
else:
raise TypeError, 'Unsuitable type for calculating minimum.'
def set_fill_value(a, fill_value):
"Sets the fill value of `a` if it is a masked array."
if isinstance(a, MaskedArray):
a.set_fill_value(fill_value)
def get_fill_value(a):
"""Returns the fill value of `a`, if any.
Otherwise, returns the default fill value for that type.
"""
if isinstance(a, MaskedArray):
result = a.fill_value
else:
result = default_fill_value(a)
return result
def common_fill_value(a, b):
"Returns the common fill_value of `a` and `b`, if any, or `None`."
t1 = get_fill_value(a)
t2 = get_fill_value(b)
if t1 == t2:
return t1
return None
#................................................
def filled(a, value = None):
"""Returns `a` as an array with masked data replaced by `value`.
If `value` is `None` or the special element `masked`, `get_fill_value(a)`
is used instead.
If `a` is already a contiguous numeric array, `a` itself is returned.
`filled(a)` can be used to be sure that the result is numeric when passing
an object a to other software ignorant of MA, in particular to numpy itself.
"""
if hasattr(a, 'filled'):
return a.filled(value)
elif isinstance(a, ndarray): # and a.flags['CONTIGUOUS']:
return a
elif isinstance(a, dict):
return numeric.array(a, 'O')
else:
return numeric.array(a)
def get_masked_subclass(*arrays):
"""Returns the youngest subclass of MaskedArray from a list of arrays,
or MaskedArray. In case of siblings, the first takes over."""
if len(arrays) == 1:
arr = arrays[0]
if isinstance(arr, MaskedArray):
rcls = type(arr)
else:
rcls = MaskedArray
else:
arrcls = [type(a) for a in arrays]
rcls = arrcls[0]
if not issubclass(rcls, MaskedArray):
rcls = MaskedArray
for cls in arrcls[1:]:
if issubclass(cls, rcls):
rcls = cls
return rcls
#####--------------------------------------------------------------------------
#---- --- Ufuncs ---
#####--------------------------------------------------------------------------
ufunc_domain = {}
ufunc_fills = {}
class domain_check_interval:
"""Defines a valid interval,
so that `domain_check_interval(a,b)(x) = true` where `x < a` or `x > b`."""
def __init__(self, a, b):
"domain_check_interval(a,b)(x) = true where x < a or y > b"
if (a > b):
(a, b) = (b, a)
self.a = a
self.b = b
def __call__ (self, x):
"Execute the call behavior."
return umath.logical_or(umath.greater (x, self.b),
umath.less(x, self.a))
#............................
class domain_tan:
"""Defines a valid interval for the `tan` function,
so that `domain_tan(eps) = True where `abs(cos(x)) < eps`"""
def __init__(self, eps):
"domain_tan(eps) = true where abs(cos(x)) < eps)"
self.eps = eps
def __call__ (self, x):
"Execute the call behavior."
return umath.less(umath.absolute(umath.cos(x)), self.eps)
#............................
class domain_safe_divide:
"""defines a domain for safe division."""
def __init__ (self, tolerance=divide_tolerance):
self.tolerance = tolerance
def __call__ (self, a, b):
return umath.absolute(a) * self.tolerance >= umath.absolute(b)
#............................
class domain_greater:
"domain_greater(v)(x) = true where x <= v"
def __init__(self, critical_value):
"domain_greater(v)(x) = true where x <= v"
self.critical_value = critical_value
def __call__ (self, x):
"Execute the call behavior."
return umath.less_equal(x, self.critical_value)
#............................
class domain_greater_equal:
"domain_greater_equal(v)(x) = true where x < v"
def __init__(self, critical_value):
"domain_greater_equal(v)(x) = true where x < v"
self.critical_value = critical_value
def __call__ (self, x):
"Execute the call behavior."
return umath.less(x, self.critical_value)
#..............................................................................
class masked_unary_operation:
"""Defines masked version of unary operations,
where invalid values are pre-masked.
:IVariables:
- `f` : function.
- `fill` : Default filling value *[0]*.
- `domain` : Default domain *[None]*.
"""
def __init__ (self, mufunc, fill=0, domain=None):
""" masked_unary_operation(aufunc, fill=0, domain=None)
aufunc(fill) must be defined
self(x) returns aufunc(x)
with masked values where domain(x) is true or getmask(x) is true.
"""
self.f = mufunc
self.fill = fill
self.domain = domain
self.__doc__ = getattr(mufunc, "__doc__", str(mufunc))
self.__name__ = getattr(mufunc, "__name__", str(mufunc))
ufunc_domain[mufunc] = domain
ufunc_fills[mufunc] = fill
#
def __call__ (self, a, *args, **kwargs):
"Execute the call behavior."
# numeric tries to return scalars rather than arrays when given scalars.
m = getmask(a)
d1 = filled(a, self.fill)
if self.domain is not None:
m = mask_or(m, numeric.asarray(self.domain(d1)))
# Take care of the masked singletong first ...
if m.ndim == 0 and m:
return masked
# Get the result....
if isinstance(a, MaskedArray):
result = self.f(d1, *args, **kwargs).view(type(a))
else:
result = self.f(d1, *args, **kwargs).view(MaskedArray)
# Fix the mask if we don't have a scalar
if result.ndim > 0:
result._mask = m
return result
#
def __str__ (self):
return "Masked version of %s. [Invalid values are masked]" % str(self.f)
#..............................................................................
class masked_binary_operation:
"""Defines masked version of binary operations,
where invalid values are pre-masked.
:IVariables:
- `f` : function.
- `fillx` : Default filling value for first array*[0]*.
- `filly` : Default filling value for second array*[0]*.
- `domain` : Default domain *[None]*.
"""
def __init__ (self, mbfunc, fillx=0, filly=0):
"""abfunc(fillx, filly) must be defined.
abfunc(x, filly) = x for all x to enable reduce.
"""
self.f = mbfunc
self.fillx = fillx
self.filly = filly
self.__doc__ = getattr(mbfunc, "__doc__", str(mbfunc))
self.__name__ = getattr(mbfunc, "__name__", str(mbfunc))
ufunc_domain[mbfunc] = None
ufunc_fills[mbfunc] = (fillx, filly)
#
def __call__ (self, a, b, *args, **kwargs):
"Execute the call behavior."
m = mask_or(getmask(a), getmask(b))
if (not m.ndim) and m:
return masked
result = self.f(a, b, *args, **kwargs).view(get_masked_subclass(a,b))
if result.ndim > 0:
result.unshare_mask()
result._masklayer |= m
return result
#
def reduce (self, target, axis=0, dtype=None):
"""Reduces `target` along the given `axis`."""
if isinstance(target, MaskedArray):
tclass = type(target)
else:
tclass = MaskedArray
m = getmask(target)
t = filled(target, self.filly)
if t.shape == ():
t = t.reshape(1)
if m is not nomask:
m = make_mask(m, copy=1)
m.shape = (1,)
if m is nomask:
return self.f.reduce(t, axis).view(tclass)
t = t.view(tclass)
t._mask = m
# XXX: "or t.dtype" below is a workaround for what appears
# XXX: to be a bug in reduce.
tr = self.f.reduce(filled(t, self.filly), axis, dtype=dtype or t.dtype)
mr = umath.logical_and.reduce(m, axis)
tr = tr.view(tclass)
if mr.ndim > 0:
tr._mask = mr
return tr
elif mr:
return masked
return tr
def outer (self, a, b):
"Returns the function applied to the outer product of a and b."
ma = getmask(a)
mb = getmask(b)
if ma is nomask and mb is nomask:
m = nomask
else:
ma = getmaskarray(a)
mb = getmaskarray(b)
m = umath.logical_or.outer(ma, mb)
if (not m.ndim) and m:
return masked
rcls = get_masked_subclass(a,b)
d = self.f.outer(filled(a, self.fillx), filled(b, self.filly)).view(rcls)
if d.ndim > 0:
d._mask = m
return d
def accumulate (self, target, axis=0):
"""Accumulates `target` along `axis` after filling with y fill value."""
if isinstance(target, MaskedArray):
tclass = type(target)
else:
tclass = masked_array
t = filled(target, self.filly)
return self.f.accumulate(t, axis).view(tclass)
def __str__ (self):
return "Masked version of " + str(self.f)
#..............................................................................
class domained_binary_operation:
"""Defines binary operations that have a domain, like divide.
These are complicated so they are a separate class.
They have no reduce, outer or accumulate.
:IVariables:
- `f` : function.
- `fillx` : Default filling value for first array*[0]*.
- `filly` : Default filling value for second array*[0]*.
- `domain` : Default domain *[None]*.
"""
def __init__ (self, dbfunc, domain, fillx=0, filly=0):
"""abfunc(fillx, filly) must be defined.
abfunc(x, filly) = x for all x to enable reduce.
"""
self.f = dbfunc
self.domain = domain
self.fillx = fillx
self.filly = filly
self.__doc__ = getattr(dbfunc, "__doc__", str(dbfunc))
self.__name__ = getattr(dbfunc, "__name__", str(dbfunc))
ufunc_domain[dbfunc] = domain
ufunc_fills[dbfunc] = (fillx, filly)
def __call__(self, a, b):
"Execute the call behavior."
ma = getmask(a)
mb = getmask(b)
d1 = filled(a, self.fillx)
d2 = filled(b, self.filly)
t = numeric.asarray(self.domain(d1, d2))
if fromnumeric.sometrue(t, None):
d2 = numeric.where(t, self.filly, d2)
mb = mask_or(mb, t)
m = mask_or(ma, mb)
if (not m.ndim) and m:
return masked
result = self.f(d1, d2).view(get_masked_subclass(a,b))
if result.ndim > 0:
result._mask = m
return result
def __str__ (self):
return "Masked version of " + str(self.f)
#..............................................................................
# Unary ufuncs
exp = masked_unary_operation(umath.exp)
conjugate = masked_unary_operation(umath.conjugate)
sin = masked_unary_operation(umath.sin)
cos = masked_unary_operation(umath.cos)
tan = masked_unary_operation(umath.tan)
arctan = masked_unary_operation(umath.arctan)
arcsinh = masked_unary_operation(umath.arcsinh)
sinh = masked_unary_operation(umath.sinh)
cosh = masked_unary_operation(umath.cosh)
tanh = masked_unary_operation(umath.tanh)
abs = absolute = masked_unary_operation(umath.absolute)
fabs = masked_unary_operation(umath.fabs)
negative = masked_unary_operation(umath.negative)
floor = masked_unary_operation(umath.floor)
ceil = masked_unary_operation(umath.ceil)
around = masked_unary_operation(fromnumeric.round_)
logical_not = masked_unary_operation(umath.logical_not)
# Domained unary ufuncs
sqrt = masked_unary_operation(umath.sqrt, 0.0, domain_greater_equal(0.0))
log = masked_unary_operation(umath.log, 1.0, domain_greater(0.0))
log10 = masked_unary_operation(umath.log10, 1.0, domain_greater(0.0))
tan = masked_unary_operation(umath.tan, 0.0, domain_tan(1.e-35))
arcsin = masked_unary_operation(umath.arcsin, 0.0,
domain_check_interval(-1.0, 1.0))
arccos = masked_unary_operation(umath.arccos, 0.0,
domain_check_interval(-1.0, 1.0))
arccosh = masked_unary_operation(umath.arccosh, 1.0, domain_greater_equal(1.0))
arctanh = masked_unary_operation(umath.arctanh, 0.0,
domain_check_interval(-1.0+1e-15, 1.0-1e-15))
# Binary ufuncs
add = masked_binary_operation(umath.add)
subtract = masked_binary_operation(umath.subtract)
multiply = masked_binary_operation(umath.multiply, 1, 1)
arctan2 = masked_binary_operation(umath.arctan2, 0.0, 1.0)
equal = masked_binary_operation(umath.equal)
equal.reduce = None
not_equal = masked_binary_operation(umath.not_equal)
not_equal.reduce = None
less_equal = masked_binary_operation(umath.less_equal)
less_equal.reduce = None
greater_equal = masked_binary_operation(umath.greater_equal)
greater_equal.reduce = None
less = masked_binary_operation(umath.less)
less.reduce = None
greater = masked_binary_operation(umath.greater)
greater.reduce = None
logical_and = masked_binary_operation(umath.logical_and)
alltrue = masked_binary_operation(umath.logical_and, 1, 1).reduce
logical_or = masked_binary_operation(umath.logical_or)
sometrue = logical_or.reduce
logical_xor = masked_binary_operation(umath.logical_xor)
bitwise_and = masked_binary_operation(umath.bitwise_and)
bitwise_or = masked_binary_operation(umath.bitwise_or)
bitwise_xor = masked_binary_operation(umath.bitwise_xor)
hypot = masked_binary_operation(umath.hypot)
# Domained binary ufuncs
divide = domained_binary_operation(umath.divide, domain_safe_divide(), 0, 1)
true_divide = domained_binary_operation(umath.true_divide,
domain_safe_divide(), 0, 1)
floor_divide = domained_binary_operation(umath.floor_divide,
domain_safe_divide(), 0, 1)
remainder = domained_binary_operation(umath.remainder,
domain_safe_divide(), 0, 1)
fmod = domained_binary_operation(umath.fmod, domain_safe_divide(), 0, 1)
#####--------------------------------------------------------------------------
#---- --- Mask creation functions ---
#####--------------------------------------------------------------------------
def getmask(a):
"""Returns the mask of `a`, if any, or `nomask`.
Returns `nomask` if `a` is not a masked array.
To get an array for sure use getmaskarray."""
if hasattr(a, "_mask"):
return a._mask
else:
return nomask
def getmaskarray(a):
"""Returns the mask of `a`, if any.
Otherwise, returns an array of `False`, with the same shape as `a`.
"""
m = getmask(a)
if m is nomask:
return make_mask_none(fromnumeric.shape(a))
else:
return m
def is_mask(m):
"""Returns `True` if `m` is a legal mask.
Does not check contents, only type.
"""
try:
return m.dtype.type is MaskType
except AttributeError:
return False
#
def make_mask(m, copy=False, small_mask=True, flag=None):
"""make_mask(m, copy=0, small_mask=0)
Returns `m` as a mask, creating a copy if necessary or requested.
The function can accept any sequence of integers or `nomask`.
Does not check that contents must be 0s and 1s.
If `small_mask=True`, returns `nomask` if `m` contains no true elements.
:Parameters:
- `m` (ndarray) : Mask.
- `copy` (boolean, *[False]*) : Returns a copy of `m` if true.
- `small_mask` (boolean, *[False]*): Flattens mask to `nomask` if `m` is all false.
"""
if flag is not None:
warnings.warn("The flag 'flag' is now called 'small_mask'!",
DeprecationWarning)
small_mask = flag
if m is nomask:
return nomask
elif isinstance(m, ndarray):
m = filled(m, True)
if m.dtype.type is MaskType:
if copy:
result = numeric.array(m, dtype=MaskType, copy=copy)
else:
result = m
else:
result = numeric.array(m, dtype=MaskType)
else:
result = numeric.array(filled(m, True), dtype=MaskType)
# Bas les masques !
if small_mask and not result.any():
return nomask
else:
return result
def make_mask_none(s):
"Returns a mask of shape `s`, filled with `False`."
result = numeric.zeros(s, dtype=MaskType)
return result
def mask_or (m1, m2, copy=False, small_mask=True):
"""Returns the combination of two masks `m1` and `m2`.
The masks are combined with the `logical_or` operator, treating `nomask` as false.
The result may equal m1 or m2 if the other is nomask.
:Parameters:
- `m` (ndarray) : Mask.
- `copy` (boolean, *[False]*) : Returns a copy of `m` if true.
- `small_mask` (boolean, *[False]*): Flattens mask to `nomask` if `m` is all false.
"""
if m1 is nomask:
return make_mask(m2, copy=copy, small_mask=small_mask)
if m2 is nomask:
return make_mask(m1, copy=copy, small_mask=small_mask)
if m1 is m2 and is_mask(m1):
return m1
return make_mask(umath.logical_or(m1, m2), copy=copy, small_mask=small_mask)
#####--------------------------------------------------------------------------
#--- --- Masking functions ---
#####--------------------------------------------------------------------------
def masked_where(condition, x, copy=True):
"""Returns `x` as an array masked where `condition` is true.
Masked values of `x` or `condition` are kept.
:Parameters:
- `condition` (ndarray) : Masking condition.
- `x` (ndarray) : Array to mask.
- `copy` (boolean, *[False]*) : Returns a copy of `m` if true.
"""
cm = filled(condition,1)
if isinstance(x,MaskedArray):
m = mask_or(x._mask, cm)
return x.__class__(x._data, mask=m, copy=copy)
else:
return MaskedArray(fromnumeric.asarray(x), copy=copy, mask=cm)
def masked_greater(x, value, copy=1):
"Shortcut to `masked_where`, with ``condition = (x > value)``."
return masked_where(greater(x, value), x, copy=copy)
def masked_greater_equal(x, value, copy=1):
"Shortcut to `masked_where`, with ``condition = (x >= value)``."
return masked_where(greater_equal(x, value), x, copy=copy)
def masked_less(x, value, copy=True):
"Shortcut to `masked_where`, with ``condition = (x < value)``."
return masked_where(less(x, value), x, copy=copy)
def masked_less_equal(x, value, copy=True):
"Shortcut to `masked_where`, with ``condition = (x <= value)``."
return masked_where(less_equal(x, value), x, copy=copy)
def masked_not_equal(x, value, copy=True):
"Shortcut to `masked_where`, with ``condition = (x != value)``."
return masked_where((x != value), x, copy=copy)
#
def masked_equal(x, value, copy=True):
"""Shortcut to `masked_where`, with ``condition = (x == value)``.
For floating point, consider `masked_values(x, value)` instead.
"""
return masked_where((x == value), x, copy=copy)
# d = filled(x, 0)
# c = umath.equal(d, value)
# m = mask_or(c, getmask(x))
# return array(d, mask=m, copy=copy)
def masked_inside(x, v1, v2, copy=True):
"""Shortcut to `masked_where`, where `condition` is True for x inside
the interval `[v1,v2]` ``(v1 <= x <= v2)``.
The boundaries `v1` and `v2` can be given in either order.
"""
if v2 < v1:
(v1, v2) = (v2, v1)
xf = filled(x)
condition = (xf >= v1) & (xf <= v2)
return masked_where(condition, x, copy=copy)
def masked_outside(x, v1, v2, copy=True):
"""Shortcut to `masked_where`, where `condition` is True for x outside
the interval `[v1,v2]` ``(x < v1)|(x > v2)``.
The boundaries `v1` and `v2` can be given in either order.
"""
if v2 < v1:
(v1, v2) = (v2, v1)
xf = filled(x)
condition = (xf < v1) | (xf > v2)
return masked_where(condition, x, copy=copy)
#
def masked_object(x, value, copy=True):
"""Masks the array `x` where the data are exactly equal to `value`.
This function is suitable only for `object` arrays: for floating point,
please use `masked_values` instead.
The mask is set to `nomask` if posible.
:parameter copy (Boolean, *[True]*): Returns a copy of `x` if true. """
if isMaskedArray(x):
condition = umath.equal(x._data, value)
mask = x._mask
else:
condition = umath.equal(fromnumeric.asarray(x), value)
mask = nomask
mask = mask_or(mask, make_mask(condition, small_mask=True))
return masked_array(x, mask=mask, copy=copy, fill_value=value)
def masked_values(x, value, rtol=1.e-5, atol=1.e-8, copy=True):
"""Masks the array `x` where the data are approximately equal to `value`
(that is, ``abs(x - value) <= atol+rtol*abs(value)``).
Suitable only for floating points. For integers, please use `masked_equal`.
The mask is set to `nomask` if posible.
:Parameters:
- `rtol` (Float, *[1e-5]*): Tolerance parameter.
- `atol` (Float, *[1e-8]*): Tolerance parameter.
- `copy` (boolean, *[False]*) : Returns a copy of `x` if True.
"""
abs = umath.absolute
xnew = filled(x, value)
if issubclass(xnew.dtype.type, numeric.floating):
condition = umath.less_equal(abs(xnew-value), atol+rtol*abs(value))
try:
mask = x._mask
except AttributeError:
mask = nomask
else:
condition = umath.equal(xnew, value)
mask = nomask
mask = mask_or(mask, make_mask(condition, small_mask=True))
return masked_array(xnew, mask=mask, copy=copy, fill_value=value)
#####--------------------------------------------------------------------------
#---- --- Printing options ---
#####--------------------------------------------------------------------------
class _MaskedPrintOption:
"""Handles the string used to represent missing data in a masked array."""
def __init__ (self, display):
"Creates the masked_print_option object."
self._display = display
self._enabled = True
def display(self):
"Displays the string to print for masked values."
return self._display
def set_display (self, s):
"Sets the string to print for masked values."
self._display = s
def enabled(self):
"Is the use of the display value enabled?"
return self._enabled
def enable(self, small_mask=1):
"Set the enabling small_mask to `small_mask`."
self._enabled = small_mask
def __str__ (self):
return str(self._display)
__repr__ = __str__
#if you single index into a masked location you get this object.
masked_print_option = _MaskedPrintOption('--')
#####--------------------------------------------------------------------------
#---- --- MaskedArray class ---
#####--------------------------------------------------------------------------
#def _getoptions(a_out, a_in):
# "Copies standards options of a_in to a_out."
# for att in [']
class _mathmethod(object):
"""Defines a wrapper for arithmetic methods.
Instead of directly calling a ufunc, the corresponding method of the `array._data`
object is called instead.
"""
def __init__ (self, methodname, fill_self=0, fill_other=0, domain=None):
"""
:Parameters:
- `methodname` (String) : Method name.
- `fill_self` (Float *[0]*) : Fill value for the instance.
- `fill_other` (Float *[0]*) : Fill value for the target.
- `domain` (Domain object *[None]*) : Domain of non-validity.
"""
self.methodname = methodname
self.fill_self = fill_self
self.fill_other = fill_other
self.domain = domain
self.obj = None
self.__doc__ = self.getdoc()
#
def getdoc(self):
"Returns the doc of the function (from the doc of the method)."
try:
return getattr(MaskedArray, self.methodname).__doc__
except:
return getattr(ndarray, self.methodname).__doc__
#
def __get__(self, obj, objtype=None):
self.obj = obj
return self
#
def __call__ (self, other, *args):
"Execute the call behavior."
instance = self.obj
m_self = instance._mask
m_other = getmask(other)
base = instance.filled(self.fill_self)
target = filled(other, self.fill_other)
if self.domain is not None:
# We need to force the domain to a ndarray only.
if self.fill_other > self.fill_self:
domain = self.domain(base, target)
else:
domain = self.domain(target, base)
if domain.any():
#If `other` is a subclass of ndarray, `filled` must have the
# same subclass, else we'll lose some info.
#The easiest then is to fill `target` instead of creating
# a pure ndarray.
#Oh, and we better make a copy!
if isinstance(other, ndarray):
# We don't want to modify other: let's copy target, then
target = target.copy()
target[fromnumeric.asarray(domain)] = self.fill_other
else:
target = numeric.where(fromnumeric.asarray(domain),
self.fill_other, target)
m_other = mask_or(m_other, domain)
m = mask_or(m_self, m_other)
method = getattr(base, self.methodname)
result = method(target, *args).view(type(instance))
try:
result._mask = m
except AttributeError:
if m:
result = masked
return result
#...............................................................................
class _arraymethod(object):
"""Defines a wrapper for basic array methods.
Upon call, returns a masked array, where the new `_data` array is the output
of the corresponding method called on the original `_data`.
If `onmask` is True, the new mask is the output of the method calld on the initial mask.
If `onmask` is False, the new mask is just a reference to the initial mask.
:Parameters:
`funcname` : String
Name of the function to apply on data.
`onmask` : Boolean *[True]*
Whether the mask must be processed also (True) or left alone (False).
"""
def __init__(self, funcname, onmask=True):
self._name = funcname
self._onmask = onmask
self.obj = None
self.__doc__ = self.getdoc()
#
def getdoc(self):
"Returns the doc of the function (from the doc of the method)."
methdoc = getattr(ndarray, self._name, None)
methdoc = getattr(numpy, self._name, methdoc)
# methdoc = getattr(MaskedArray, self._name, methdoc)
if methdoc is not None:
return methdoc.__doc__
# try:
# return getattr(MaskedArray, self._name).__doc__
# except:
# try:
# return getattr(numpy, self._name).__doc__
# except:
# return getattr(ndarray, self._name).__doc
#
def __get__(self, obj, objtype=None):
self.obj = obj
return self
#
def __call__(self, *args, **params):
methodname = self._name
data = self.obj._data
mask = self.obj._mask
cls = type(self.obj)
result = getattr(data, methodname)(*args, **params).view(cls)
if result.ndim:
if not self._onmask:
result._mask = mask
elif mask is not nomask:
result.__setmask__(getattr(mask, methodname)(*args, **params))
return result
#..........................................................
class flatiter(object):
"Defines an interator."
def __init__(self, ma):
self.ma = ma
self.ma_iter = numpy.asarray(ma).flat
if ma._mask is nomask:
self.maskiter = None
else:
self.maskiter = ma._mask.flat
def __iter__(self):
return self
### This won't work is ravel makes a copy
def __setitem__(self, index, value):
a = self.ma.ravel()
a[index] = value
def next(self):
d = self.ma_iter.next()
if self.maskiter is not None and self.maskiter.next():
d = masked
return d
class MaskedArray(numeric.ndarray):
"""Arrays with possibly masked values.
Masked values of True exclude the corresponding element from any computation.
Construction:
x = array(data, dtype=None, copy=True, order=False,
mask = nomask, fill_value=None, small_mask=True)
If copy=False, every effort is made not to copy the data:
If `data` is a MaskedArray, and argument mask=nomask, then the candidate data
is `data._data` and the mask used is `data._mask`.
If `data` is a numeric array, it is used as the candidate raw data.
If `dtype` is not None and is different from data.dtype.char then a data copy is required.
Otherwise, the candidate is used.
If a data copy is required, the raw (unmasked) data stored is the result of:
numeric.array(data, dtype=dtype.char, copy=copy)
If `mask` is `nomask` there are no masked values.
Otherwise mask must be convertible to an array of booleans with the same shape as x.
If `small_mask` is True, a mask consisting of zeros (False) only is compressed to `nomask`.
Otherwise, the mask is not compressed.
fill_value is used to fill in masked values when necessary, such as when
printing and in method/function filled().
The fill_value is not used for computation within this module.
"""
__array_priority__ = 10.1
_defaultmask = nomask
_defaulthardmask = False
_baseclass = numeric.ndarray
def __new__(cls, data=None, mask=nomask, dtype=None, copy=False, fill_value=None,
keep_mask=True, small_mask=True, hard_mask=False, flag=None,
**options):
"""array(data, dtype=None, copy=True, mask=nomask, fill_value=None)
If `data` is already a ndarray, its dtype becomes the default value of dtype.
"""
if flag is not None:
warnings.warn("The flag 'flag' is now called 'small_mask'!",
DeprecationWarning)
small_mask = flag
# Process data............
_data = numeric.array(data, dtype=dtype, copy=copy, subok=True)
_baseclass = getattr(_data, '_baseclass', type(_data))
_data = _data.view(cls)
# Pricess mask ...........
# Backwards compat
if hasattr(data,'_mask') and not isinstance(data, ndarray):
_data._mask = data._mask
_data._sharedmask = True
if mask is nomask:
if _data._hasmasked:
if copy:
_data._masklayer = data._masklayer.copy()
_data._sharedmask = False
if not keep_mask:
_data._masklayer.flat = False
_data._hasmasked = False
# else;
# _data._mask = data._mask
else:
mask = numeric.array(mask, dtype=MaskType, copy=copy)
if mask.shape != _data.shape:
(nd, nm) = (_data.size, mask.size)
if nm == 1:
mask = numeric.resize(mask, _data.shape)
elif nm == nd:
mask = fromnumeric.reshape(mask, _data.shape)
else:
msg = "Mask and data not compatible: data size is %i, "+\
"mask size is %i."
raise MAError, msg % (nd, nm)
if not (_data._hasmasked and keep_mask):
_data._masklayer = mask
_data._hasmasked = True
_data._sharedmask = True
else:
_data._masklayer = _data._masklayer.copy()
_data._mask.__ior__(mask)
_data._sharedmask = False
_data._hasmasked = True
# Process extra options ..
# Update fille_value
_data._fill_value = getattr(data, '_fill_value', fill_value)
if _data._fill_value is None:
_data._fill_value = default_fill_value(_data)
_data._hardmask = hard_mask
_data._smallmask = small_mask
_data._baseclass = _baseclass
return _data
#........................
def __array_finalize__(self,obj):
"""Finalizes the masked array.
"""
# Finalize mask ...............
self._masklayer = getattr(obj, '_masklayer', nomask)
self._hasmasked = getattr(obj, '_hasmasked', False)
if self._masklayer is nomask:
self._masklayer = numeric.zeros(obj.shape, dtype=MaskType)
self._hasmasked = False
# if not self.shape:
# self._mask.shape = obj.shape
# else:
# self._mask.shape = self.shape
if self._hasmasked:
self._masklayer.shape = self.shape
# except ValueError:
# self._mask = nomask
# Get the remaining options ...
self._hardmask = getattr(obj, '_hardmask', self._defaulthardmask)
self._smallmask = getattr(obj, '_smallmask', True)
self._sharedmask = True
self._baseclass = getattr(obj, '_baseclass', type(obj))
self._fill_value = getattr(obj, '_fill_value', None)
return
#..................................
def __array_wrap__(self, obj, context=None):
"""Special hook for ufuncs.
Wraps the numpy array and sets the mask according to context.
"""
result = obj.view(type(self))
result._masklayer = self._masklayer.copy()
result._hasmasked = self._hasmasked
# result._hasmasked = result._masklayer.any()
#..........
if context is not None:
(func, args, out_index) = context
m = reduce(mask_or, [getmask(arg) for arg in args])
# Get domain mask
domain = ufunc_domain.get(func, None)
if domain is not None:
if len(args) > 2:
d = reduce(domain, args)
else:
d = domain(*args)
if m is nomask:
if d is not nomask:
result._masklayer.flat = d
result._hasmasked = True
else:
result._masklayer |= d
result._hasmasked |= d.any()
else:
result._masklayer.__ior__(m)
result._hasmasked = m.any()
if result._masklayer.size == 1 and result._masklayer.item():
return masked
#....
result._fill_value = self._fill_value
result._hardmask = self._hardmask
result._smallmask = self._smallmask
result._baseclass = self._baseclass
return result
#.............................................
def __getitem__(self, indx):
"""x.__getitem__(y) <==> x[y]
Returns the item described by i. Not a copy as in previous versions.
"""
# This test is useful, but we should keep things light...
# if getmask(indx) is not nomask:
# msg = "Masked arrays must be filled before they can be used as indices!"
# raise IndexError, msg
# super() can't work here if the underlying data is a matrix...
result = (self._data).__getitem__(indx)
m = self._masklayer[indx]
if hasattr(result, 'shape') and len(result.shape) > 0:
# Not a scalar: make sure that dout is a MA
result = result.view(type(self))
result.__setmask__(m)
elif not m.shape and m:
return masked
return result
#........................
def __setitem__(self, indx, value):
"""x.__setitem__(i, y) <==> x[i]=y
Sets item described by index. If value is masked, masks those locations.
"""
if self is masked:
raise MAError, 'Cannot alter the masked element.'
# if getmask(indx) is not nomask:
# msg = "Masked arrays must be filled before they can be used as indices!"
# raise IndexError, msg
#....
if value is masked:
# if self._sharedmask:
# slef.unshare_mask()
self._masklayer[indx] = True
self._hasmasked = True
return
#....
dval = numeric.asarray(value).astype(self.dtype)
valmask = getmask(value)
if not self._hasmasked:
if valmask is not nomask:
self._masklayer[indx] = valmask
self._hasmasked = True
elif not self._hardmask:
self.unshare_mask()
if valmask is nomask:
self._masklayer[indx] = False
self._hasmasked = self._masklayer.any()
else:
self._masklayer[indx] = valmask
self._hasmasked = True
elif hasattr(indx, 'dtype') and (indx.dtype==bool_):
indx = indx * umath.logical_not(self._masklayer)
# elif isinstance(index, int):
else:
mindx = mask_or(self._masklayer[indx], valmask, copy=True)
dindx = self._data[indx]
if dindx.size > 1:
dindx[~mindx] = dval
elif mindx is nomask:
dindx = dval
dval = dindx
self._masklayer[indx] = mindx
# Set data ..........
#dval = filled(value).astype(self.dtype)
ndarray.__setitem__(self._data,indx,dval)
# #.....
# if m is nomask or not m.any():
# self._mask = nomask
# else:
# self._mask = m
#............................................
def __getslice__(self, i, j):
"""x.__getslice__(i, j) <==> x[i:j]
Returns the slice described by i, j.
The use of negative indices is not supported."""
return self.__getitem__(slice(i,j))
#........................
def __setslice__(self, i, j, value):
"""x.__setslice__(i, j, value) <==> x[i:j]=value
Sets a slice i:j to `value`.
If `value` is masked, masks those locations."""
self.__setitem__(slice(i,j), value)
#............................................
def __setmask__(self, mask):
newmask = make_mask(mask, copy=False, small_mask=self._smallmask)
# self.unshare_mask()
if self._hardmask:
if newmask is not nomask:
self.unshare_mask()
self._masklayer.__ior__(newmask)
self._hasmasked = True
else:
# if self._hasmasked and (mask is nomask):
# self.unshare_mask()
self._masklayer.flat = newmask
self._hasmasked = newmask.any()
if self._masklayer.shape:
self._masklayer.shape = self.shape
_set_mask = __setmask__
def _get_mask(self):
"""Returns the current mask."""
if not self._hasmasked and self._smallmask:
return nomask
return self._masklayer
# def _set_mask(self, mask):
# """Sets the mask to `mask`."""
# mask = make_mask(mask, copy=False, small_mask=self._smallmask)
# if mask is not nomask:
# if mask.size != self.size:
# raise ValueError, "Inconsistent shape between data and mask!"
# if mask.shape != self.shape:
# mask.shape = self.shape
# self._mask = mask
# else:
# self._mask = nomask
mask = _mask = property(fget=_get_mask, fset=__setmask__, doc="Mask")
#............................................
def harden_mask(self):
"Forces the mask to hard."
self._hardmask = True
def soften_mask(self):
"Forces the mask to soft."
self._hardmask = False
def unshare_mask(self):
if self._sharedmask:
self._masklayer = self._masklayer.copy()
self._sharedmask = False
#............................................
def _get_data(self):
"Returns the current data (as a view of the original underlying data)>"
return self.view(self._baseclass)
_data = property(fget=_get_data)
#............................................
def _get_flat(self):
"""Calculates the flat value.
"""
return flatiter(self)
#
def _set_flat (self, value):
"x.flat = value"
y = self.ravel()
y[:] = value
#
flat = property(fget=_get_flat, fset=_set_flat, doc="Flat version")
#............................................
def get_fill_value(self):
"Returns the filling value."
if self._fill_value is None:
self._fill_value = default_fill_value(self)
return self._fill_value
def set_fill_value(self, value=None):
"""Sets the filling value to `value`.
If None, uses the default, based on the data type."""
if value is None:
value = default_fill_value(self)
self._fill_value = value
fill_value = property(fget=get_fill_value, fset=set_fill_value,
doc="Filling value")
def filled(self, fill_value=None):
"""Returns an array of the same class as `_data`,
with masked values filled with `fill_value`.
Subclassing is preserved.
If `fill_value` is None, uses self.fill_value.
"""
m = self._mask
if m is nomask:
return self._data
#
if fill_value is None:
fill_value = self.fill_value
#
if self is masked_singleton:
result = numeric.asanyarray(fill_value)
else:
result = self._data.copy()
try:
result[m] = fill_value
except (TypeError, AttributeError):
fill_value = numeric.array(fill_value, dtype=object)
d = result.astype(object)
result = fromnumeric.choose(m, (d, fill_value))
except IndexError:
#ok, if scalar
if self._data.shape:
raise
elif m:
result = numeric.array(fill_value, dtype=self.dtype)
else:
result = self._data
return result
def compressed(self):
"A 1-D array of all the non-masked data."
d = self.ravel()
if self._mask is nomask:
return d
else:
return d[numeric.logical_not(d._mask)]
#............................................
def __str__(self):
"""x.__str__() <==> str(x)
Calculates the string representation, using masked for fill if it is enabled.
Otherwise, fills with fill value.
"""
if masked_print_option.enabled():
f = masked_print_option
if self is masked:
return str(f)
m = self._mask
if m is nomask:
res = self._data
else:
if m.shape == () and m:
return str(f)
# convert to object array to make filled work
#CHECK: the two lines below seem more robust than the self._data.astype
# res = numeric.empty(self._data.shape, object_)
# numeric.putmask(res,~m,self._data)
res = self._data.astype("|O8")
res[m] = f
else:
res = self.filled(self.fill_value)
return str(res)
def __repr__(self):
"""x.__repr__() <==> repr(x)
Calculates the repr representation, using masked for fill if it is enabled.
Otherwise fill with fill value.
"""
with_mask = """\
masked_%(name)s(data =
%(data)s,
mask =
%(mask)s,
fill_value=%(fill)s)
"""
with_mask1 = """\
masked_%(name)s(data = %(data)s,
mask = %(mask)s,
fill_value=%(fill)s)
"""
n = len(self.shape)
name = repr(self._data).split('(')[0]
if n <= 1:
return with_mask1 % {
'name': name,
'data': str(self),
'mask': str(self._mask),
'fill': str(self.fill_value),
}
return with_mask % {
'name': name,
'data': str(self),
'mask': str(self._mask),
'fill': str(self.fill_value),
}
#............................................
def __iadd__(self, other):
"Adds other to self in place."
ndarray.__iadd__(self._data,other)
m = getmask(other)
if m is not nomask:
self._masklayer += m
self._hasmasked = True
# if m is not nomask:
# self._masklayer |= m
# self._hasmasked = True
return self
#....
def __isub__(self, other):
"Subtracts other from self in place."
ndarray.__isub__(self._data,other)
m = getmask(other)
# if not self._hasmasked:
# self._masklayer.flat = m
# elif m is not nomask:
# self._masklayer += m
if m is not nomask:
self._masklayer += m
self._hasmasked = True
return self
#....
def __imul__(self, other):
"Multiplies self by other in place."
ndarray.__imul__(self._data,other)
m = getmask(other)
# if not self._hasmasked:
# self._masklayer.flat = m
# elif m is not nomask:
# self._masklayer += m
if m is not nomask:
self._masklayer += m
self._hasmasked = True
return self
#....
def __idiv__(self, other):
"Divides self by other in place."
dom_mask = domain_safe_divide().__call__(self, filled(other,1))
other_mask = getmask(other)
new_mask = mask_or(other_mask, dom_mask)
ndarray.__idiv__(self._data, other)
self._mask = mask_or(self._mask, new_mask)
return self
#....
__add__ = _mathmethod('__add__')
__radd__ = _mathmethod('__add__')
__sub__ = _mathmethod('__sub__')
__rsub__ = _mathmethod('__rsub__')
__pow__ = _mathmethod('__pow__')
__mul__ = _mathmethod('__mul__', 1, 1)
__rmul__ = _mathmethod('__mul__', 1, 1)
__div__ = _mathmethod('__div__', 0, 1, domain_safe_divide())
__rdiv__ = _mathmethod('__rdiv__', 1, 0, domain_safe_divide())
__truediv__ = _mathmethod('__truediv__', 0, 1, domain_safe_divide())
__rtruediv__ = _mathmethod('__rtruediv__', 1, 0, domain_safe_divide())
__floordiv__ = _mathmethod('__floordiv__', 0, 1, domain_safe_divide())
__rfloordiv__ = _mathmethod('__rfloordiv__', 1, 0, domain_safe_divide())
__eq__ = _mathmethod('__eq__')
__ne__ = _mathmethod('__ne__')
__le__ = _mathmethod('__le__')
__lt__ = _mathmethod('__lt__')
__ge__ = _mathmethod('__ge__')
__gt__ = _mathmethod('__gt__')
#............................................
def __float__(self):
"Converts self to float."
if self._mask is not nomask:
warnings.warn("Warning: converting a masked element to nan.")
return numpy.nan
#raise MAError, 'Cannot convert masked element to a Python float.'
return float(self.item())
def __int__(self):
"Converts self to int."
if self._mask is not nomask:
raise MAError, 'Cannot convert masked element to a Python int.'
return int(self.item())
#............................................
def count(self, axis=None):
"""Counts the non-masked elements of the array along a given axis,
and returns a masked array where the mask is True where all data are masked.
If `axis` is None, counts all the non-masked elements, and returns either a
scalar or the masked singleton."""
m = self._mask
s = self.shape
ls = len(s)
if m is nomask:
if ls == 0:
return 1
if ls == 1:
return s[0]
if axis is None:
return self.size
else:
n = s[axis]
t = list(s)
del t[axis]
return numeric.ones(t) * n
n1 = fromnumeric.size(m, axis)
n2 = m.astype(int_).sum(axis)
if axis is None:
return (n1-n2)
else:
return masked_array(n1 - n2)
#............................................
# def _get_shape(self):
# "Returns the current shape."
# return self._data.shape
# #
# def _set_shape (self, newshape):
# "Sets the array's shape."
# self._data.shape = newshape
# if self._mask is not nomask:
# #self._mask = self._mask.copy()
# self._mask.shape = newshape
# #
# shape = property(fget=_get_shape, fset=_set_shape,
# doc="Shape of the array, as a tuple.")
#
def reshape (self, *s):
"""Reshapes the array to shape s.
Returns a new masked array.
If you want to modify the shape in place, please use `a.shape = s`"""
# TODO: Do we keep super, or reshape _data and take a view ?
result = super(MaskedArray, self).reshape(*s)
result._masklayer = self._masklayer.reshape(*s)
return result
#
repeat = _arraymethod('repeat')
#
def resize(self, newshape, refcheck=True, order=False):
"""Attempts to modify size and shape of self inplace.
The array must own its own memory and not be referenced by other arrays.
Returns None.
"""
try:
self._data.resize(newshape, refcheck, order)
if self.mask is not nomask:
self._mask.resize(newshape, refcheck, order)
except ValueError:
raise ValueError("Cannot resize an array that has been referenced "
"or is referencing another array in this way.\n"
"Use the resize function.")
return None
#
flatten = _arraymethod('flatten')
#
def put(self, indices, values, mode='raise'):
"""Sets storage-indexed locations to corresponding values.
a.put(values, indices, mode) sets a.flat[n] = values[n] for each n in indices.
`values` can be scalar or an array shorter than indices, and it will be repeated,
if necessary.
If `values` has some masked values, the initial mask is updated in consequence,
else the corresponding values are unmasked.
"""
m = self._mask
# Hard mask: Get rid of the values/indices that fall on masked data
if self._hardmask and self._mask is not nomask:
mask = self._mask[indices]
indices = numeric.asarray(indices)
values = numeric.asanyarray(values)
values.resize(indices.shape)
indices = indices[~mask]
values = values[~mask]
#....
self._data.put(indices, values, mode=mode)
#....
if m is nomask:
m = getmask(values)
else:
m = m.copy()
if getmask(values) is nomask:
m.put(indices, False, mode=mode)
else:
m.put(indices, values._mask, mode=mode)
m = make_mask(m, copy=False, small_mask=True)
self._mask = m
#............................................
def ids (self):
"""Return the address of the data and mask areas."""
return (self.ctypes.data, self._mask.ctypes.data)
#............................................
def all(self, axis=None, out=None):
"""a.all(axis) returns True if all entries along the axis are True.
Returns False otherwise. If axis is None, uses the flatten array.
Masked data are considered as True during computation.
Outputs a masked array, where the mask is True if all data are masked along the axis.
Note: the out argument is not really operational...
"""
d = self.filled(True).all(axis=axis, out=out).view(type(self))
if d.ndim > 0:
d.__setmask__(self._mask.all(axis))
return d
def any(self, axis=None, out=None):
"""a.any(axis) returns True if some or all entries along the axis are True.
Returns False otherwise. If axis is None, uses the flatten array.
Masked data are considered as False during computation.
Outputs a masked array, where the mask is True if all data are masked along the axis.
Note: the out argument is not really operational...
"""
d = self.filled(False).any(axis=axis, out=out).view(type(self))
if d.ndim > 0:
d.__setmask__(self._mask.all(axis))
return d
def nonzero(self):
"""a.nonzero() returns a tuple of arrays
Returns a tuple of arrays, one for each dimension of a,
containing the indices of the non-zero elements in that
dimension. The corresponding non-zero values can be obtained
with
a[a.nonzero()].
To group the indices by element, rather than dimension, use
transpose(a.nonzero())
instead. The result of this is always a 2d array, with a row for
each non-zero element."""
return numeric.asarray(self.filled(0)).nonzero()
#............................................
def trace(self, offset=0, axis1=0, axis2=1, dtype=None, out=None):
"""a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
Returns the sum along the offset diagonal of the array's indicated `axis1` and `axis2`.
"""
# TODO: What are we doing with `out`?
m = self._mask
if m is nomask:
result = super(MaskedArray, self).trace(offset=offset, axis1=axis1,
axis2=axis2, out=out)
return result.astype(dtype)
else:
D = self.diagonal(offset=offset, axis1=axis1, axis2=axis2)
return D.astype(dtype).sum(axis=None)
#............................................
def sum(self, axis=None, dtype=None):
"""a.sum(axis=None, dtype=None)
Sums the array `a` over the given axis `axis`.
Masked values are set to 0.
If `axis` is None, applies to a flattened version of the array.
"""
if self._mask is nomask:
mask = nomask
else:
mask = self._mask.all(axis)
if (not mask.ndim) and mask:
return masked
result = self.filled(0).sum(axis, dtype=dtype).view(type(self))
if result.ndim > 0:
result.__setmask__(mask)
return result
def cumsum(self, axis=None, dtype=None):
"""a.cumprod(axis=None, dtype=None)
Returns the cumulative sum of the elements of array `a` along the given axis `axis`.
Masked values are set to 0.
If `axis` is None, applies to a flattened version of the array.
"""
result = self.filled(0).cumsum(axis=axis, dtype=dtype).view(type(self))
result.__setmask__(self.mask)
return result
def prod(self, axis=None, dtype=None):
"""a.prod(axis=None, dtype=None)
Returns the product of the elements of array `a` along the given axis `axis`.
Masked elements are set to 1.
If `axis` is None, applies to a flattened version of the array.
"""
if self._mask is nomask:
mask = nomask
else:
mask = self._mask.all(axis)
if (not mask.ndim) and mask:
return masked
result = self.filled(1).prod(axis=axis, dtype=dtype).view(type(self))
if result.ndim:
result.__setmask__(mask)
return result
product = prod
def cumprod(self, axis=None, dtype=None):
"""a.cumprod(axis=None, dtype=None)
Returns the cumulative product of ethe lements of array `a` along the given axis `axis`.
Masked values are set to 1.
If `axis` is None, applies to a flattened version of the array.
"""
result = self.filled(1).cumprod(axis=axis, dtype=dtype).view(type(self))
result.__setmask__(self.mask)
return result
def mean(self, axis=None, dtype=None):
"""a.mean(axis=None, dtype=None)
Averages the array over the given axis. If the axis is None,
averages over all dimensions of the array. Equivalent to
a.sum(axis, dtype) / size(a, axis).
The optional dtype argument is the data type for intermediate
calculations in the sum.
Returns a masked array, of the same class as a.
"""
if self._mask is nomask:
return super(MaskedArray, self).mean(axis=axis, dtype=dtype)
else:
dsum = self.sum(axis=axis, dtype=dtype)
cnt = self.count(axis=axis)
return dsum*1./cnt
def anom(self, axis=None, dtype=None):
"""a.anom(axis=None, dtype=None)
Returns the anomalies, or deviation from the average.
"""
m = self.mean(axis, dtype)
if not axis:
return (self - m)
else:
return (self - expand_dims(m,axis))
def var(self, axis=None, dtype=None):
"""a.var(axis=None, dtype=None)
Returns the variance, a measure of the spread of a distribution.
The variance is the average of the squared deviations from the mean,
i.e. var = mean((x - x.mean())**2).
"""
if self._mask is nomask:
# TODO: Do we keep super, or var _data and take a view ?
return super(MaskedArray, self).var(axis=axis, dtype=dtype)
else:
cnt = self.count(axis=axis)
danom = self.anom(axis=axis, dtype=dtype)
danom *= danom
dvar = danom.sum(axis) / cnt
# dvar /= cnt
if axis is not None:
dvar._mask = mask_or(self._mask.all(axis), (cnt==1))
return dvar
def std(self, axis=None, dtype=None):
"""a.std(axis=None, dtype=None)
Returns the standard deviation, a measure of the spread of a distribution.
The standard deviation is the square root of the average of the squared
deviations from the mean, i.e. std = sqrt(mean((x - x.mean())**2)).
"""
dvar = self.var(axis,dtype)
if axis is not None or dvar is not masked:
dvar = sqrt(dvar)
return dvar
#............................................
def argsort(self, axis=None, fill_value=None, kind='quicksort',
order=None):
"""Returns an array of indices that sort 'a' along the specified axis.
Masked values are filled beforehand to `fill_value`.
If `fill_value` is None, uses the default for the data type.
Returns a numpy array.
:Keywords:
`axis` : Integer *[None]*
Axis to be indirectly sorted (default -1)
`kind` : String *['quicksort']*
Sorting algorithm (default 'quicksort')
Possible values: 'quicksort', 'mergesort', or 'heapsort'
Returns: array of indices that sort 'a' along the specified axis.
This method executes an indirect sort along the given axis using the
algorithm specified by the kind keyword. It returns an array of indices of
the same shape as 'a' that index data along the given axis in sorted order.
The various sorts are characterized by average speed, worst case
performance, need for work space, and whether they are stable. A stable
sort keeps items with the same key in the same relative order. The three
available algorithms have the following properties:
|------------------------------------------------------|
| kind | speed | worst case | work space | stable|
|------------------------------------------------------|
|'quicksort'| 1 | O(n^2) | 0 | no |
|'mergesort'| 2 | O(n*log(n)) | ~n/2 | yes |
|'heapsort' | 3 | O(n*log(n)) | 0 | no |
|------------------------------------------------------|
All the sort algorithms make temporary copies of the data when the sort is not
along the last axis. Consequently, sorts along the last axis are faster and use
less space than sorts along other axis.
"""
if fill_value is None:
fill_value = default_fill_value(self)
d = self.filled(fill_value)
return d.argsort(axis=axis, kind=kind, order=order)
#........................
def argmin(self, axis=None, fill_value=None):
"""Returns a ndarray of indices for the minimum values of `a` along the
specified axis.
Masked values are treated as if they had the value `fill_value`.
If `fill_value` is None, the default for the data type is used.
Returns a numpy array.
:Keywords:
`axis` : Integer *[None]*
Axis to be indirectly sorted (default -1)
`fill_value` : var *[None]*
Default filling value. If None, uses the data type default.
"""
if fill_value is None:
fill_value = minimum_fill_value(self)
d = self.filled(fill_value)
return d.argmin(axis)
#........................
def argmax(self, axis=None, fill_value=None):
"""Returns the array of indices for the maximum values of `a` along the
specified axis.
Masked values are treated as if they had the value `fill_value`.
If `fill_value` is None, the default for the data type is used.
Returns a numpy array.
:Keywords:
`axis` : Integer *[None]*
Axis to be indirectly sorted (default -1)
`fill_value` : var *[None]*
Default filling value. If None, uses the data type default.
"""
if fill_value is None:
fill_value = maximum_fill_value(self._data)
d = self.filled(fill_value)
return d.argmax(axis)
def sort(self, axis=-1, kind='quicksort', order=None,
endwith=True, fill_value=None):
"""
Sort a along the given axis.
Keyword arguments:
axis -- axis to be sorted (default -1)
kind -- sorting algorithm (default 'quicksort')
Possible values: 'quicksort', 'mergesort', or 'heapsort'.
order -- If a has fields defined, then the order keyword can be the
field name to sort on or a list (or tuple) of field names
to indicate the order that fields should be used to define
the sort.
endwith--Boolean flag indicating whether missing values (if any) should
be forced in the upper indices (at the end of the array) or
lower indices (at the beginning).
Returns: None.
This method sorts 'a' in place along the given axis using the algorithm
specified by the kind keyword.
The various sorts may characterized by average speed, worst case
performance, need for work space, and whether they are stable. A stable
sort keeps items with the same key in the same relative order and is most
useful when used with argsort where the key might differ from the items
being sorted. The three available algorithms have the following properties:
|------------------------------------------------------|
| kind | speed | worst case | work space | stable|
|------------------------------------------------------|
|'quicksort'| 1 | O(n^2) | 0 | no |
|'mergesort'| 2 | O(n*log(n)) | ~n/2 | yes |
|'heapsort' | 3 | O(n*log(n)) | 0 | no |
|------------------------------------------------------|
All the sort algorithms make temporary copies of the data when the sort is
not along the last axis. Consequently, sorts along the last axis are faster
and use less space than sorts along other axis.
"""
if fill_value is None:
if endwith:
filler = minimum_fill_value(self)
else:
filler = maximum_fill_value(self)
else:
filler = fill_value
indx = self.filled(filler).argsort(axis=axis,kind=kind,order=order)
self[:] = self[indx]
return
#............................................
def min(self, axis=None, fill_value=None):
"""Returns the minimum/a along the given axis.
If `axis` is None, applies to the flattened array. Masked values are filled
with `fill_value` during processing. If `fill_value is None, it is set to the
maximum_fill_value corresponding to the data type."""
mask = self._mask
# Check all/nothing case ......
if mask is nomask:
return super(MaskedArray, self).min(axis=axis)
elif (not mask.ndim) and mask:
return masked
# Get the mask ................
if axis is None:
mask = umath.logical_and.reduce(mask.flat)
else:
mask = umath.logical_and.reduce(mask, axis=axis)
# Get the fil value ...........
if fill_value is None:
fill_value = minimum_fill_value(self)
# Get the data ................
result = self.filled(fill_value).min(axis=axis).view(type(self))
if result.ndim > 0:
result._mask = mask
return result
#........................
def max(self, axis=None, fill_value=None):
"""Returns the maximum/a along the given axis.
If `axis` is None, applies to the flattened array. Masked values are filled
with `fill_value` during processing. If `fill_value is None, it is set to the
maximum_fill_value corresponding to the data type."""
mask = self._mask
# Check all/nothing case ......
if mask is nomask:
return super(MaskedArray, self).max(axis=axis)
elif (not mask.ndim) and mask:
return masked
# Check teh mask ..............
if axis is None:
mask = umath.logical_and.reduce(mask.flat)
else:
mask = umath.logical_and.reduce(mask, axis=axis)
# Get the fill value ..........
if fill_value is None:
fill_value = maximum_fill_value(self)
# Get the data ................
result = self.filled(fill_value).max(axis=axis).view(type(self))
if result.ndim > 0:
result._mask = mask
return result
#........................
def ptp(self, axis=None, fill_value=None):
"""Returns the visible data range (max-min) along the given axis.
If the axis is `None`, applies on a flattened array. Masked values are filled
with `fill_value` for processing. If `fill_value` is None, the maximum is uses
the maximum default, the minimum uses the minimum default."""
return self.max(axis, fill_value) - self.min(axis, fill_value)
# Array methods ---------------------------------------
conj = conjugate = _arraymethod('conjugate')
copy = _arraymethod('copy')
diagonal = _arraymethod('diagonal')
take = _arraymethod('take')
ravel = _arraymethod('ravel')
transpose = _arraymethod('transpose')
T = property(fget=lambda self:self.transpose())
swapaxes = _arraymethod('swapaxes')
clip = _arraymethod('clip', onmask=False)
compress = _arraymethod('compress')
copy = _arraymethod('copy')
squeeze = _arraymethod('squeeze')
#--------------------------------------------
def tolist(self, fill_value=None):
"""Copies the data portion of the array to a hierarchical python list and
returns that list. Data items are converted to the nearest compatible Python
type. Masked values are filled with `fill_value`"""
return self.filled(fill_value).tolist()
#........................
def tostring(self, fill_value=None):
"""a.tostring(order='C', fill_value=None) -> raw copy of array data as a Python string.
Keyword arguments:
order : order of the data item in the copy {"C","F","A"} (default "C")
fill_value : value used in lieu of missing data
Construct a Python string containing the raw bytes in the array. The order
of the data in arrays with ndim > 1 is specified by the 'order' keyword and
this keyword overrides the order of the array. The
choices are:
"C" -- C order (row major)
"Fortran" -- Fortran order (column major)
"Any" -- Current order of array.
None -- Same as "Any"
Masked data are filled with fill_value. If fill_value is None, the data-type-
dependent default is used."""
return self.filled(fill_value).tostring()
#--------------------------------------------
# Backwards Compatibility. Heck...
@property
def data(self):
"""Returns the `_data` part of the MaskedArray.
You should really use `_data` instead..."""
return self._data
def raw_data(self):
"""Returns the `_data` part of the MaskedArray.
You should really use `_data` instead..."""
return self._data
##..............................................................................
#class _arithmethods:
# """Defines a wrapper for arithmetic methods.
#Instead of directly calling a ufunc, the corresponding method of the `array._data`
#object is called instead.
# """
# def __init__ (self, methodname, fill_self=0, fill_other=0, domain=None):
# """
#:Parameters:
# - `methodname` (String) : Method name.
# - `fill_self` (Float *[0]*) : Fill value for the instance.
# - `fill_other` (Float *[0]*) : Fill value for the target.
# - `domain` (Domain object *[None]*) : Domain of non-validity.
# """
# self.methodname = methodname
# self.fill_self = fill_self
# self.fill_other = fill_other
# self.domain = domain
# #
# def __call__ (self, instance, other, *args):
# "Execute the call behavior."
# m_self = instance._mask
# m_other = getmask(other)
# base = filled(instance,self.fill_self)
# target = filled(other, self.fill_other)
# if self.domain is not None:
# # We need to force the domain to a ndarray only.
# if self.fill_other > self.fill_self:
# domain = self.domain(base, target)
# else:
# domain = self.domain(target, base)
# if domain.any():
# #If `other` is a subclass of ndarray, `filled` must have the
# # same subclass, else we'll lose some info.
# #The easiest then is to fill `target` instead of creating
# # a pure ndarray.
# #Oh, and we better make a copy!
# if isinstance(other, ndarray):
# if target is other:
# # We don't want to modify other: let's copy target, then
# target = target.copy()
# target[:] = numeric.where(fromnumeric.asarray(domain),
# self.fill_other, target)
# else:
# target = numeric.where(fromnumeric.asarray(domain),
# self.fill_other, target)
# m_other = mask_or(m_other, domain)
# m = mask_or(m_self, m_other)
# method = getattr(base, self.methodname)
# return instance.__class__(method(target, *args), mask=m)
# #
# def patch(self):
# """Applies the method `func` from class `method` to MaskedArray"""
# return types.MethodType(self,None,MaskedArray)
#..............................................................................
#####--------------------------------------------------------------------------
#---- --- Shortcuts ---
#####---------------------------------------------------------------------------
def isMaskedArray(x):
"Is x a masked array, that is, an instance of MaskedArray?"
return isinstance(x, MaskedArray)
isarray = isMaskedArray
isMA = isMaskedArray #backward compatibility
#masked = MaskedArray(0, int, mask=1)
masked_singleton = MaskedArray(0, dtype=int_, mask=True)
masked = masked_singleton
masked_array = MaskedArray
def array(data, dtype=None, copy=False, order=False, mask=nomask,
keep_mask=True, small_mask=True, hard_mask=None, fill_value=None):
"""array(data, dtype=None, copy=True, order=False, mask=nomask,
keep_mask=True, small_mask=True, fill_value=None)
Acts as shortcut to MaskedArray, with options in a different order for convenience.
And backwards compatibility...
"""
#TODO: we should try to put 'order' somwehere
return MaskedArray(data, mask=mask, dtype=dtype, copy=copy,
keep_mask=keep_mask, small_mask=small_mask,
hard_mask=hard_mask, fill_value=fill_value)
def is_masked(x):
"""Returns whether x has some masked values."""
m = getmask(x)
if m is nomask:
return False
elif m.any():
return True
return False
#####--------------------------------------------------------------------------
#---- --- Patch methods ---
#####--------------------------------------------------------------------------
#class _arraymethod:
# """Defines a wrapper for basic array methods.
#Upon call, returns a masked array, where the new `_data` array is the output
#of the corresponding method called on the original `_data`.
#
#If `onmask` is True, the new mask is the output of the method calld on the initial mask.
#If `onmask` is False, the new mask is just a reference to the initial mask.
#
#:Parameters:
# `funcname` : String
# Name of the function to apply on data.
# `onmask` : Boolean *[True]*
# Whether the mask must be processed also (True) or left alone (False).
# """
# def __init__(self, funcname, onmask=True):
# self._name = funcname
# self._onmask = onmask
# self.__doc__ = getattr(ndarray, self._name).__doc__
# def __call__(self, instance, *args, **params):
# methodname = self._name
# (d,m) = (instance._data, instance._mask)
# C = instance.__class__
# if m is nomask:
# return C(getattr(d,methodname).__call__(*args, **params))
# elif self._onmask:
# return C(getattr(d,methodname).__call__(*args, **params),
# mask=getattr(m,methodname)(*args, **params) )
# else:
# return C(getattr(d,methodname).__call__(*args, **params), mask=m)
#
# def patch(self):
# "Adds the new method to MaskedArray."
# return types.MethodType(self, None, MaskedArray)
##......................................
#MaskedArray.conj = MaskedArray.conjugate = _arraymethod('conjugate').patch()
#MaskedArray.diagonal = _arraymethod('diagonal').patch()
#MaskedArray.take = _arraymethod('take').patch()
#MaskedArray.ravel = _arraymethod('ravel').patch()
#MaskedArray.transpose = _arraymethod('transpose').patch()
#MaskedArray.T = _arraymethod('transpose').patch()
#MaskedArray.swapaxes = _arraymethod('swapaxes').patch()
#MaskedArray.clip = _arraymethod('clip', onmask=False).patch()
#MaskedArray.compress = _arraymethod('compress').patch()
#MaskedArray.resize = _arraymethod('resize').patch()
#MaskedArray.copy = _arraymethod('copy').patch()
#####---------------------------------------------------------------------------
#---- --- Extrema functions ---
#####---------------------------------------------------------------------------
class _extrema_operation(object):
def __call__(self, a, b=None):
"Executes the call behavior."
if b is None:
return self.reduce(a)
return where(self.compare(a, b), a, b)
#.........
def reduce(self, target, axis=None):
"""Reduces target along the given axis."""
m = getmask(target)
if axis is not None:
kargs = { 'axis' : axis }
else:
kargs = {}
if m is nomask:
t = self.ufunc.reduce(target, **kargs)
else:
target = target.filled(self.fill_value_func(target)).view(type(target))
t = self.ufunc.reduce(target, **kargs)
m = umath.logical_and.reduce(m, **kargs)
if hasattr(t, '_mask'):
t._mask = m
elif m:
t = masked
return t
#.........
def outer (self, a, b):
"Returns the function applied to the outer product of a and b."
ma = getmask(a)
mb = getmask(b)
if ma is nomask and mb is nomask:
m = nomask
else:
ma = getmaskarray(a)
mb = getmaskarray(b)
m = logical_or.outer(ma, mb)
result = self.ufunc.outer(filled(a), filled(b))
result._mask = m
return result
#............................
class _minimum_operation(_extrema_operation):
"Object to calculate minima"
def __init__ (self):
"""minimum(a, b) or minimum(a)
In one argument case, returns the scalar minimum.
"""
self.ufunc = umath.minimum
self.afunc = amin
self.compare = less
self.fill_value_func = minimum_fill_value
#............................
class _maximum_operation(_extrema_operation):
"Object to calculate maxima"
def __init__ (self):
"""maximum(a, b) or maximum(a)
In one argument case returns the scalar maximum.
"""
self.ufunc = umath.maximum
self.afunc = amax
self.compare = greater
self.fill_value_func = maximum_fill_value
#..........................................................
def min(array, axis=None, out=None):
"""Returns the minima along the given axis.
If `axis` is None, applies to the flattened array."""
if out is not None:
raise TypeError("Output arrays Unsupported for masked arrays")
if axis is None:
return minimum(array)
else:
return minimum.reduce(array, axis)
#............................
def max(obj, axis=None, out=None):
"""Returns the maxima along the given axis.
If `axis` is None, applies to the flattened array."""
if out is not None:
raise TypeError("Output arrays Unsupported for masked arrays")
if axis is None:
return maximum(obj)
else:
return maximum.reduce(obj, axis)
#.............................
def ptp(obj, axis=None):
"""a.ptp(axis=None) = a.max(axis)-a.min(axis)"""
try:
return obj.max(axis)-obj.min(axis)
except AttributeError:
return max(obj, axis=axis) - min(obj, axis=axis)
#####---------------------------------------------------------------------------
#---- --- Definition of functions from the corresponding methods ---
#####---------------------------------------------------------------------------
class _frommethod:
"""Defines functions from existing MaskedArray methods.
:ivar _methodname (String): Name of the method to transform.
"""
def __init__(self, methodname):
self._methodname = methodname
self.__doc__ = self.getdoc()
def getdoc(self):
"Returns the doc of the function (from the doc of the method)."
try:
return getattr(MaskedArray, self._methodname).__doc__
except:
return getattr(numpy, self._methodname).__doc__
def __call__(self, a, *args, **params):
if isinstance(a, MaskedArray):
return getattr(a, self._methodname).__call__(*args, **params)
#FIXME ----
#As x is not a MaskedArray, we transform it to a ndarray with asarray
#... and call the corresponding method.
#Except that sometimes it doesn't work (try reshape([1,2,3,4],(2,2)))
#we end up with a "SystemError: NULL result without error in PyObject_Call"
#A dirty trick is then to call the initial numpy function...
method = getattr(fromnumeric.asarray(a), self._methodname)
try:
return method(*args, **params)
except SystemError:
return getattr(numpy,self._methodname).__call__(a, *args, **params)
all = _frommethod('all')
anomalies = anom = _frommethod('anom')
any = _frommethod('any')
conjugate = _frommethod('conjugate')
ids = _frommethod('ids')
nonzero = _frommethod('nonzero')
diagonal = _frommethod('diagonal')
maximum = _maximum_operation()
mean = _frommethod('mean')
minimum = _minimum_operation ()
product = _frommethod('prod')
ptp = _frommethod('ptp')
ravel = _frommethod('ravel')
repeat = _frommethod('repeat')
std = _frommethod('std')
sum = _frommethod('sum')
swapaxes = _frommethod('swapaxes')
take = _frommethod('take')
var = _frommethod('var')
#..............................................................................
def power(a, b, third=None):
"""Computes a**b elementwise.
Masked values are set to 1."""
if third is not None:
raise MAError, "3-argument power not supported."
ma = getmask(a)
mb = getmask(b)
m = mask_or(ma, mb)
fa = filled(a, 1)
fb = filled(b, 1)
if fb.dtype.char in typecodes["Integer"]:
return masked_array(umath.power(fa, fb), m)
md = make_mask((fa < 0), small_mask=1)
m = mask_or(m, md)
if m is nomask:
return masked_array(umath.power(fa, fb))
else:
fa[m] = 1
return masked_array(umath.power(fa, fb), m)
#..............................................................................
def argsort(a, axis=None, kind='quicksort', order=None, fill_value=None):
"""Returns an array of indices that sort 'a' along the specified axis.
Masked values are filled beforehand to `fill_value`.
If `fill_value` is None, uses the default for the data type.
Returns a numpy array.
:Keywords:
`axis` : Integer *[None]*
Axis to be indirectly sorted (default -1)
`kind` : String *['quicksort']*
Sorting algorithm (default 'quicksort')
Possible values: 'quicksort', 'mergesort', or 'heapsort'
Returns: array of indices that sort 'a' along the specified axis.
This method executes an indirect sort along the given axis using the
algorithm specified by the kind keyword. It returns an array of indices of
the same shape as 'a' that index data along the given axis in sorted order.
The various sorts are characterized by average speed, worst case
performance, need for work space, and whether they are stable. A stable
sort keeps items with the same key in the same relative order. The three
available algorithms have the following properties:
|------------------------------------------------------|
| kind | speed | worst case | work space | stable|
|------------------------------------------------------|
|'quicksort'| 1 | O(n^2) | 0 | no |
|'mergesort'| 2 | O(n*log(n)) | ~n/2 | yes |
|'heapsort' | 3 | O(n*log(n)) | 0 | no |
|------------------------------------------------------|
All the sort algorithms make temporary copies of the data when the sort is not
along the last axis. Consequently, sorts along the last axis are faster and use
less space than sorts along other axis.
"""
if fill_value is None:
fill_value = default_fill_value(a)
d = filled(a, fill_value)
if axis is None:
return d.argsort(kind=kind, order=order)
return d.argsort(axis, kind=kind, order=order)
def argmin(a, axis=None, fill_value=None):
"""Returns the array of indices for the minimum values of `a` along the
specified axis.
Masked values are treated as if they had the value `fill_value`.
If `fill_value` is None, the default for the data type is used.
Returns a numpy array.
:Keywords:
`axis` : Integer *[None]*
Axis to be indirectly sorted (default -1)
`fill_value` : var *[None]*
Default filling value. If None, uses the data type default.
"""
if fill_value is None:
fill_value = default_fill_value(a)
d = filled(a, fill_value)
return d.argmin(axis=axis)
def argmax(a, axis=None, fill_value=None):
"""Returns the array of indices for the maximum values of `a` along the
specified axis.
Masked values are treated as if they had the value `fill_value`.
If `fill_value` is None, the default for the data type is used.
Returns a numpy array.
:Keywords:
`axis` : Integer *[None]*
Axis to be indirectly sorted (default -1)
`fill_value` : var *[None]*
Default filling value. If None, uses the data type default.
"""
if fill_value is None:
fill_value = default_fill_value(a)
try:
fill_value = - fill_value
except:
pass
d = filled(a, fill_value)
return d.argmax(axis=axis)
def sort(a, axis=-1, kind='quicksort', order=None, endwith=True, fill_value=None):
"""
Sort a along the given axis.
Keyword arguments:
axis -- axis to be sorted (default -1)
kind -- sorting algorithm (default 'quicksort')
Possible values: 'quicksort', 'mergesort', or 'heapsort'.
order -- If a has fields defined, then the order keyword can be the
field name to sort on or a list (or tuple) of field names
to indicate the order that fields should be used to define
the sort.
endwith--Boolean flag indicating whether missing values (if any) should
be forced in the upper indices (at the end of the array) or
lower indices (at the beginning).
Returns: None.
This method sorts 'a' in place along the given axis using the algorithm
specified by the kind keyword.
The various sorts may characterized by average speed, worst case
performance, need for work space, and whether they are stable. A stable
sort keeps items with the same key in the same relative order and is most
useful when used with argsort where the key might differ from the items
being sorted. The three available algorithms have the following properties:
|------------------------------------------------------|
| kind | speed | worst case | work space | stable|
|------------------------------------------------------|
|'quicksort'| 1 | O(n^2) | 0 | no |
|'mergesort'| 2 | O(n*log(n)) | ~n/2 | yes |
|'heapsort' | 3 | O(n*log(n)) | 0 | no |
|------------------------------------------------------|
All the sort algorithms make temporary copies of the data when the sort is
not along the last axis. Consequently, sorts along the last axis are faster
and use less space than sorts along other axis.
"""
a = numeric.asanyarray(a)
if fill_value is None:
if endwith:
filler = minimum_fill_value(a)
else:
filler = maximum_fill_value(a)
else:
filler = fill_value
# return
indx = numpy.indices(a.shape).tolist()
indx[axis] = filled(a,filler).argsort(axis=axis,kind=kind,order=order)
return a[indx]
def compressed(x):
"""Returns a compressed version of a masked array (or just the array if it
wasn't masked first)."""
if getmask(x) is None:
return x
else:
return x.compressed()
def count(a, axis = None):
"Count of the non-masked elements in a, or along a certain axis."
a = masked_array(a)
return a.count(axis)
def concatenate(arrays, axis=0):
"Concatenates the arrays along the given axis"
d = numeric.concatenate([filled(a) for a in arrays], axis)
rcls = get_masked_subclass(*arrays)
data = d.view(rcls)
for x in arrays:
if getmask(x) is not nomask:
break
else:
return data
dm = numeric.concatenate([getmaskarray(a) for a in arrays], axis)
dm = make_mask(dm, copy=False, small_mask=True)
data._mask = dm
return data
def expand_dims(x,axis):
"""Expand the shape of a by including newaxis before given axis."""
result = n_expand_dims(x,axis)
if isinstance(x, MaskedArray):
new_shape = result.shape
result = x.view()
result.shape = new_shape
if result._mask is not nomask:
result._mask.shape = new_shape
return result
#......................................
def left_shift (a, n):
"Left shift n bits"
m = getmask(a)
if m is nomask:
d = umath.left_shift(filled(a), n)
return masked_array(d)
else:
d = umath.left_shift(filled(a, 0), n)
return masked_array(d, mask=m)
def right_shift (a, n):
"Right shift n bits"
m = getmask(a)
if m is nomask:
d = umath.right_shift(filled(a), n)
return masked_array(d)
else:
d = umath.right_shift(filled(a, 0), n)
return masked_array(d, mask=m)
#......................................
def put(a, indices, values, mode='raise'):
"""Sets storage-indexed locations to corresponding values.
Values and indices are filled if necessary."""
# We can't use 'frommethod', the order of arguments is different
try:
return a.put(indices, values, mode=mode)
except AttributeError:
return fromnumeric.asarray(a).put(indices, values, mode=mode)
def putmask(a, mask, values): #, mode='raise'):
"""`putmask(a, mask, v)` results in `a = v` for all places where `mask` is true.
If `v` is shorter than `mask`, it will be repeated as necessary.
In particular `v` can be a scalar or length 1 array."""
# We can't use 'frommethod', the order of arguments is different
try:
return a.putmask(values, mask)
except AttributeError:
return fromnumeric.asarray(a).putmask(values, mask)
def transpose(a,axes=None):
"""Returns a view of the array with dimensions permuted according to axes.
If `axes` is None (default), returns array with dimensions reversed.
"""
#We can't use 'frommethod', as 'transpose' doesn't take keywords
try:
return a.transpose(axes)
except AttributeError:
return fromnumeric.asarray(a).transpose(axes)
def reshape(a, new_shape):
"""Changes the shape of the array `a` to `new_shape`."""
#We can't use 'frommethod', it whine about some parameters. Dmmit.
try:
return a.reshape(new_shape)
except AttributeError:
return fromnumeric.asarray(a).reshape(new_shape)
def resize(x, new_shape):
"""resize(a,new_shape) returns a new array with the specified shape.
The total size of the original array can be any size.
The new array is filled with repeated copies of a. If a was masked, the new
array will be masked, and the new mask will be a repetition of the old one.
"""
# We can't use _frommethods here, as N.resize is notoriously whiny.
m = getmask(x)
if m is not nomask:
m = fromnumeric.resize(m, new_shape)
result = fromnumeric.resize(x, new_shape).view(get_masked_subclass(x))
if result.ndim:
result._mask = m
return result
#................................................
def rank(obj):
"""Gets the rank of sequence a (the number of dimensions, not a matrix rank)
The rank of a scalar is zero."""
return fromnumeric.rank(filled(obj))
#
def shape(obj):
"""Returns the shape of `a` (as a function call which also works on nested sequences).
"""
return fromnumeric.shape(filled(obj))
#
def size(obj, axis=None):
"""Returns the number of elements in the array along the given axis,
or in the sequence if `axis` is None.
"""
return fromnumeric.size(filled(obj), axis)
#................................................
#####--------------------------------------------------------------------------
#---- --- Extra functions ---
#####--------------------------------------------------------------------------
def where (condition, x, y):
"""where(condition, x, y) is x where condition is nonzero, y otherwise.
condition must be convertible to an integer array.
Answer is always the shape of condition.
The type depends on x and y. It is integer if both x and y are
the value masked.
"""
fc = filled(not_equal(condition, 0), 0)
xv = filled(x)
xm = getmask(x)
yv = filled(y)
ym = getmask(y)
d = numeric.choose(fc, (yv, xv))
md = numeric.choose(fc, (ym, xm))
m = getmask(condition)
m = make_mask(mask_or(m, md), copy=False, small_mask=True)
return masked_array(d, mask=m)
def choose (indices, t, out=None, mode='raise'):
"Returns array shaped like indices with elements chosen from t"
#TODO: implement options `out` and `mode`, if possible.
def fmask (x):
"Returns the filled array, or True if ``masked``."
if x is masked:
return 1
return filled(x)
def nmask (x):
"Returns the mask, True if ``masked``, False if ``nomask``."
if x is masked:
return 1
m = getmask(x)
if m is nomask:
return 0
return m
c = filled(indices, 0)
masks = [nmask(x) for x in t]
a = [fmask(x) for x in t]
d = numeric.choose(c, a)
m = numeric.choose(c, masks)
m = make_mask(mask_or(m, getmask(indices)), copy=0, small_mask=1)
return masked_array(d, mask=m)
def round_(a, decimals=0, out=None):
"""Returns reference to result. Copies a and rounds to 'decimals' places.
Keyword arguments:
decimals -- number of decimals to round to (default 0). May be negative.
out -- existing array to use for output (default copy of a).
Return:
Reference to out, where None specifies a copy of the original array a.
Round to the specified number of decimals. When 'decimals' is negative it
specifies the number of positions to the left of the decimal point. The
real and imaginary parts of complex numbers are rounded separately.
Nothing is done if the array is not of float type and 'decimals' is greater
than or equal to 0."""
result = fromnumeric.round_(filled(a), decimals, out)
if isinstance(a,MaskedArray):
result = result.view(type(a))
result._mask = a._mask
else:
result = result.view(MaskedArray)
return result
def arange(start, stop=None, step=1, dtype=None):
"""Just like range() except it returns a array whose type can be specified
by the keyword argument dtype.
"""
return array(numeric.arange(start, stop, step, dtype),mask=nomask)
def inner(a, b):
"""inner(a,b) returns the dot product of two arrays, which has
shape a.shape[:-1] + b.shape[:-1] with elements computed by summing the
product of the elements from the last dimensions of a and b.
Masked elements are replace by zeros.
"""
fa = filled(a, 0)
fb = filled(b, 0)
if len(fa.shape) == 0:
fa.shape = (1,)
if len(fb.shape) == 0:
fb.shape = (1,)
return masked_array(numeric.inner(fa, fb))
innerproduct = inner
def outer(a, b):
"""outer(a,b) = {a[i]*b[j]}, has shape (len(a),len(b))"""
fa = filled(a, 0).ravel()
fb = filled(b, 0).ravel()
d = numeric.outer(fa, fb)
ma = getmask(a)
mb = getmask(b)
if ma is nomask and mb is nomask:
return masked_array(d)
ma = getmaskarray(a)
mb = getmaskarray(b)
m = make_mask(1-numeric.outer(1-ma, 1-mb), copy=0)
return masked_array(d, mask=m)
outerproduct = outer
def allequal (a, b, fill_value=True):
"""
Returns `True` if all entries of a and b are equal, using
fill_value as a truth value where either or both are masked.
"""
m = mask_or(getmask(a), getmask(b))
if m is nomask:
x = filled(a)
y = filled(b)
d = umath.equal(x, y)
return d.all()
elif fill_value:
x = filled(a)
y = filled(b)
d = umath.equal(x, y)
dm = array(d, mask=m, copy=False)
return dm.filled(True).all(None)
else:
return False
def allclose (a, b, fill_value=True, rtol=1.e-5, atol=1.e-8):
""" Returns `True` if all elements of `a` and `b` are equal subject to given tolerances.
If `fill_value` is True, masked values are considered equal.
If `fill_value` is False, masked values considered unequal.
The relative error rtol should be positive and << 1.0
The absolute error `atol` comes into play for those elements of `b`
that are very small or zero; it says how small `a` must be also.
"""
m = mask_or(getmask(a), getmask(b))
d1 = filled(a)
d2 = filled(b)
x = filled(array(d1, copy=0, mask=m), fill_value).astype(float)
y = filled(array(d2, copy=0, mask=m), 1).astype(float)
d = umath.less_equal(umath.absolute(x-y), atol + rtol * umath.absolute(y))
return fromnumeric.alltrue(fromnumeric.ravel(d))
#..............................................................................
def asarray(a, dtype=None):
"""asarray(data, dtype) = array(data, dtype, copy=0)
Returns `a` as an masked array.
No copy is performed if `a` is already an array.
Subclasses are converted to base class MaskedArray.
"""
return masked_array(a, dtype=dtype, copy=False, keep_mask=True)
def empty(new_shape, dtype=float):
"""empty((d1,...,dn),dtype=float,order='C')
Returns a new array of shape (d1,...,dn) and given type with all its
entries uninitialized. This can be faster than zeros."""
return numeric.empty(new_shape, dtype).view(MaskedArray)
def empty_like(a):
"""empty_like(a)
Returns an empty (uninitialized) array of the shape and typecode of a.
Note that this does NOT initialize the returned array.
If you require your array to be initialized, you should use zeros_like()."""
return numeric.empty_like(a).view(MaskedArray)
def ones(new_shape, dtype=float):
"""ones(shape, dtype=None)
Returns an array of the given dimensions, initialized to all ones."""
return numeric.ones(new_shape, dtype).view(MaskedArray)
def zeros(new_shape, dtype=float):
"""zeros(new_shape, dtype=None)
Returns an array of the given dimensions, initialized to all zeros."""
return numeric.zeros(new_shape, dtype).view(MaskedArray)
#####--------------------------------------------------------------------------
#---- --- Pickling ---
#####--------------------------------------------------------------------------
#FIXME: We're kinda stuck with forcing the mask to have the same shape as the data
def _mareconstruct(subtype, baseshape, basetype,):
"""Internal function that builds a new MaskedArray from the information stored
in a pickle."""
_data = ndarray.__new__(ndarray, baseshape, basetype)
_mask = ndarray.__new__(ndarray, baseshape, basetype)
return MaskedArray.__new__(subtype, _data, mask=_mask, dtype=basetype, small_mask=False)
def _getstate(a):
"Returns the internal state of the masked array, for pickling purposes."
state = (1,
a.shape,
a.dtype,
a.flags.fnc,
a.tostring(),
getmaskarray(a).tostring())
return state
def _setstate(a, state):
"""Restores the internal state of the masked array, for pickling purposes.
`state` is typically the output of the ``__getstate__`` output, and is a 5-tuple:
- class name
- a tuple giving the shape of the data
- a typecode for the data
- a binary string for the data
- a binary string for the mask.
"""
(ver, shp, typ, isf, raw, msk) = state
super(MaskedArray, a).__setstate__((shp, typ, isf, raw))
(a._mask).__setstate__((shp, dtype('|b1'), isf, msk))
def _reduce(a):
"""Returns a 3-tuple for pickling a MaskedArray."""
return (_mareconstruct,
(a.__class__, (0,), 'b', ),
a.__getstate__())
def dump(a,F):
"""Pickles the MaskedArray `a` to the file `F`.
`F` can either be the handle of an exiting file, or a string representing a file name.
"""
if not hasattr(F,'readline'):
F = open(F,'w')
return cPickle.dump(a,F)
def dumps(a):
"""Returns a string corresponding to the pickling of the MaskedArray."""
return cPickle.dumps(a)
def load(F):
"""Wrapper around ``cPickle.load`` which accepts either a file-like object or
a filename."""
if not hasattr(F, 'readline'):
F = open(F,'r')
return cPickle.load(F)
def loads(strg):
"Loads a pickle from the current string."""
return cPickle.loads(strg)
MaskedArray.__getstate__ = _getstate
MaskedArray.__setstate__ = _setstate
MaskedArray.__reduce__ = _reduce
MaskedArray.__dump__ = dump
MaskedArray.__dumps__ = dumps
################################################################################
if __name__ == '__main__':
import numpy as N
from maskedarray.testutils import assert_equal, assert_array_equal, assert_mask_equal
pi = N.pi
# coremodule = __main__
a = array([1,2,3,4,5],mask=[0,1,0,0,0])
x = add.reduce(a)
assert_equal(add.reduce(a), 13)
if 0:
x = masked_array([1,2,3], mask=[1,0,0])
mx = masked_array(x)
assert_equal(mx.mask, x.mask)
mx = masked_array(x, mask=[0,1,0], keep_mask=False)
assert_equal(mx.mask, [0,1,0])
mx = masked_array(x, mask=[0,1,0], keep_mask=True)
assert_equal(mx.mask, [1,1,0])
#We default to true
mx = masked_array(x, mask=[0,1,0])
assert_equal(mx.mask, [1,1,0])
if 0:
import numpy.core.ma as nma
x = nma.arange(5)
x[2] = nma.masked
X = masked_array(x, mask=x._mask)
assert_equal(X._mask, x.mask)
assert_equal(X._data, x._data)
X = masked_array(x)
assert_equal(X._data, x._data)
assert_equal(X._mask, x.mask)
assert_equal(getmask(x), [0,0,1,0,0])
if 0:
d = arange(5)
n = [0,0,0,1,1]
m = make_mask(n)
x = array(d, mask = m)
assert( x[3] is masked)
assert( x[4] is masked)
x[[1,4]] = [10,40]
assert( x.mask is not m)
assert( x[3] is masked)
assert( x[4] is not masked)
assert_equal(x, [0,10,2,-1,40])
if 0:
d = arange(5)
n = [0,0,0,1,1]
m = make_mask(n)
xh = array(d, mask = m, hard_mask=True)
# We need to copy, to avoid updating d in xh!
xs = array(d, mask = m, hard_mask=False, copy=True)
xh[[1,4]] = [10,40]
xs[[1,4]] = [10,40]
assert_equal(xh._data, [0,10,2,3,4])
assert_equal(xs._data, [0,10,2,3,40])
#assert_equal(xh.mask.ctypes.data, m.ctypes.data)
assert_equal(xs.mask, [0,0,0,1,0])
assert(xh._hardmask)
assert(not xs._hardmask)
xh[1:4] = [10,20,30]
xs[1:4] = [10,20,30]
assert_equal(xh._data, [0,10,20,3,4])
assert_equal(xs._data, [0,10,20,30,40])
#assert_equal(xh.mask.ctypes.data, m.ctypes.data)
assert_equal(xs.mask, nomask)
xh[0] = masked
xs[0] = masked
assert_equal(xh.mask, [1,0,0,1,1])
assert_equal(xs.mask, [1,0,0,0,0])
xh[:] = 1
xs[:] = 1
assert_equal(xh._data, [0,1,1,3,4])
assert_equal(xs._data, [1,1,1,1,1])
assert_equal(xh.mask, [1,0,0,1,1])
assert_equal(xs.mask, nomask)
# Switch to soft mask
xh.soften_mask()
xh[:] = arange(5)
assert_equal(xh._data, [0,1,2,3,4])
assert_equal(xh.mask, nomask)
# Switch back to hard mask
xh.harden_mask()
xh[xh<3] = masked
assert_equal(xh._data, [0,1,2,3,4])
assert_equal(xh._mask, [1,1,1,0,0])
xh[filled(xh>1,False)] = 5
assert_equal(xh._data, [0,1,2,5,5])
assert_equal(xh._mask, [1,1,1,0,0])
#
xh = array([[1,2],[3,4]], mask = [[1,0],[0,0]], hard_mask=True)
xh[0] = 0
assert_equal(xh._data, [[1,0],[3,4]])
assert_equal(xh._mask, [[1,0],[0,0]])
xh[-1,-1] = 5
assert_equal(xh._data, [[1,0],[3,5]])
assert_equal(xh._mask, [[1,0],[0,0]])
xh[filled(xh<5,False)] = 2
assert_equal(xh._data, [[1,2],[2,5]])
assert_equal(xh._mask, [[1,0],[0,0]])
#
"Another test of hardmask"
d = arange(5)
n = [0,0,0,1,1]
m = make_mask(n)
xh = array(d, mask = m, hard_mask=True)
xh[4:5] = 999
#assert_equal(xh.mask.ctypes.data, m.ctypes.data)
xh[0:1] = 999
assert_equal(xh._data,[999,1,2,3,4])
if 0:
x = N.array([[ 0.13, 0.26, 0.90],
[ 0.28, 0.33, 0.63],
[ 0.31, 0.87, 0.70]])
m = N.array([[ True, False, False],
[False, False, False],
[True, True, False]], dtype=N.bool_)
mx = masked_array(x, mask=m)
xbig = N.array([[False, False, True],
[False, False, True],
[False, True, True]], dtype=N.bool_)
mxbig = (mx > 0.5)
mxsmall = (mx < 0.5)
#
assert (mxbig.all()==False)
assert (mxbig.any()==True)
y = mxbig.all(0)
assert_equal(mxbig.all(0),[False, False, True])
assert_equal(mxbig.all(1), [False, False, True])
assert_equal(mxbig.any(0),[False, False, True])
assert_equal(mxbig.any(1), [True, True, True])
if 1:
"Tests put."
d = arange(5)
n = [0,0,0,1,1]
m = make_mask(n)
x = array(d, mask = m)
assert( x[3] is masked)
assert( x[4] is masked)
x[[1,4]] = [10,40]
assert( x.mask is not m)
assert( x[3] is masked)
assert( x[4] is not masked)
assert_equal(x, [0,10,2,-1,40])
#
x = masked_array(arange(10), mask=[1,0,0,0,0]*2)
i = [0,2,4,6]
x.put(i, [6,4,2,0])
assert_equal(x, asarray([6,1,4,3,2,5,0,7,8,9,]))
assert_equal(x.mask, [0,0,0,0,0,1,0,0,0,0])
x.put(i, masked_array([0,2,4,6],[1,0,1,0]))
assert_array_equal(x, [0,1,2,3,4,5,6,7,8,9,])
assert_equal(x.mask, [1,0,0,0,1,1,0,0,0,0])
#
x = masked_array(arange(10), mask=[1,0,0,0,0]*2)
put(x, i, [6,4,2,0])
assert_equal(x, asarray([6,1,4,3,2,5,0,7,8,9,]))
assert_equal(x.mask, [0,0,0,0,0,1,0,0,0,0])
put(x, i, masked_array([0,2,4,6],[1,0,1,0]))
assert_array_equal(x, [0,1,2,3,4,5,6,7,8,9,])
assert_equal(x.mask, [1,0,0,0,1,1,0,0,0,0])
if 1:
x = arange(20)
x = x.reshape(4,5)
x.flat[5] = 12
assert x[1,0] == 12
z = x + 10j * x
assert_equal(z.real, x)
assert_equal(z.imag, 10*x)
assert_equal((z*conjugate(z)).real, 101*x*x)
z.imag[...] = 0.0
if 1:
x = array([1.0, 0, -1, pi/2]*2, mask=[0,1]+[0]*6)
y = array([1.0, 0, -1, pi/2]*2, mask=[1,0]+[0]*6)
d = (x,y)
z = N.add(x, y)
for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
'sin', 'cos', 'tan',
'arcsin', 'arccos', 'arctan',
'sinh', 'cosh', 'tanh',
'arcsinh',
'arccosh',
'arctanh',
'absolute', 'fabs', 'negative',
# 'nonzero', 'around',
'floor', 'ceil',
# 'sometrue', 'alltrue',
'logical_not',
'add', 'subtract', 'multiply',
'divide', 'true_divide', 'floor_divide',
'remainder', 'fmod', 'hypot', 'arctan2',
'equal', 'not_equal', 'less_equal', 'greater_equal',
'less', 'greater',
'logical_and', 'logical_or', 'logical_xor',
]:
print f
try:
uf = getattr(umath, f)
except AttributeError:
uf = getattr(fromnumeric, f)
mf = eval(f) #getattr(coremodule, f)
args = d[:uf.nin]
ur = uf(*args)
mr = mf(*args)
assert_equal(ur.filled(0), mr.filled(0), f)
assert_mask_equal(ur.mask, mr.mask)
|