File: extras.py

package info (click to toggle)
python-scipy 0.6.0-12
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 32,016 kB
  • ctags: 46,675
  • sloc: cpp: 124,854; ansic: 110,614; python: 108,664; fortran: 76,260; objc: 424; makefile: 384; sh: 10
file content (683 lines) | stat: -rw-r--r-- 24,257 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
"""Masked arrays add-ons.

A collection of utilities for maskedarray

:author: Pierre Gerard-Marchant
:contact: pierregm_at_uga_dot_edu
:version: $Id: extras.py 3153 2007-07-09 15:38:26Z pierregm $
"""
__author__ = "Pierre GF Gerard-Marchant ($Author: pierregm $)"
__version__ = '1.0'
__revision__ = "$Revision: 3153 $"
__date__     = '$Date: 2007-07-09 08:38:26 -0700 (Mon, 09 Jul 2007) $'

__all__ = [
'apply_along_axis', 'atleast_1d', 'atleast_2d', 'atleast_3d', 'average',
'vstack', 'hstack', 'dstack', 'row_stack', 'column_stack',
'compress_rowcols', 'compress_rows', 'compress_cols', 'count_masked', 
'dot', 'hsplit',
'mask_rowcols','mask_rows','mask_cols','masked_all','masked_all_like', 
'mediff1d', 'mr_',
'notmasked_edges','notmasked_contiguous',
'stdu', 'varu',
           ]

from itertools import groupby

import core
from core import *

import numpy
from numpy import float_
import numpy.core.umath as umath 
import numpy.core.numeric as numeric
from numpy.core.numeric import ndarray
from numpy.core.numeric import array as nxarray
from numpy.core.fromnumeric import asarray as nxasarray

from numpy.lib.index_tricks import concatenator
import numpy.lib.function_base as function_base

#...............................................................................
def issequence(seq):
    """Returns True if the argument is a sequence (ndarray, list or tuple)."""
    if isinstance(seq, ndarray):
        return True
    elif isinstance(seq, tuple):
        return True
    elif isinstance(seq, list):
        return True
    return False

def count_masked(arr, axis=None):
    """Counts the number of masked elements along the given axis."""
    m = getmaskarray(arr)
    return m.sum(axis)

def masked_all(shape, dtype=float_):
    """Returns an empty masked array of the given shape and dtype,
    where all the data are masked."""
    a = masked_array(numeric.empty(shape, dtype),
                     mask=numeric.ones(shape, bool_))
    return a

def masked_all_like(arr):
    """Returns an empty masked array of the same shape and dtype as the array `a`,
    where all the data are masked."""
    a = masked_array(numeric.empty_like(arr),
                     mask=numeric.ones(arr.shape, bool_))
    return a

#####--------------------------------------------------------------------------
#---- --- New methods ---
#####-------------------------------------------------------------------------- 
def varu(a, axis=None, dtype=None):
    """a.var(axis=None, dtype=None)
    Returns an unbiased estimate of the variance.
    
    Instead of dividing the sum of squared anomalies (SSA) by n, the number of 
    elements, the SSA is divided by n-1.
        """
    a = asarray(a)
    cnt = a.count(axis=axis)
    anom = a.anom(axis=axis, dtype=dtype)
    anom *= anom
    dvar = anom.sum(axis) / (cnt-1)
    if axis is None:
        return dvar
    dvar.__setmask__(mask_or(a._mask.all(axis), (cnt==1)))
    return dvar
#    return a.__class__(dvar, 
#                          mask=mask_or(a._mask.all(axis), (cnt==1)),
#                          fill_value=a._fill_value)
            
def stdu(a, axis=None, dtype=None):
    """a.var(axis=None, dtype=None)
    Returns an unbiased estimate of the standard deviation.

    Instead of dividing the sum of squared anomalies (SSA) by n, the number of 
    elements, the SSA is divided by n-1.
        """
    a = asarray(a)
    dvar = a.varu(axis,dtype)
    if axis is None:
        if dvar is masked:
            return masked
        else:
            # Should we use umath.sqrt instead ?
            return sqrt(dvar)
    return sqrt(dvar)
#    return a.__class__(sqrt(dvar._data), mask=dvar._mask, 
#                          fill_value=a._fill_value)

MaskedArray.stdu = stdu
MaskedArray.varu = varu

#####--------------------------------------------------------------------------
#---- --- Standard functions ---
#####--------------------------------------------------------------------------
class _fromnxfunction:
    """Defines a wrapper to adapt numpy functions to masked arrays."""
    def __init__(self, funcname):
        self._function = funcname
        self.__doc__ = self.getdoc()
    def getdoc(self):
        "Retrieves the __doc__ string from the function."
        return getattr(numpy, self._function).__doc__ +\
            "(The function is applied to both the _data and the mask, if any.)"
    def __call__(self, *args, **params):
        func = getattr(numpy, self._function)
        if len(args)==1:
            x = args[0]
            if isinstance(x,ndarray):
                _d = func(nxasarray(x), **params)
                _m = func(getmaskarray(x), **params)
                return masked_array(_d, mask=_m)
            elif isinstance(x, tuple) or isinstance(x, list):
                _d = func(tuple([nxasarray(a) for a in x]), **params)
                _m = func(tuple([getmaskarray(a) for a in x]), **params)
                return masked_array(_d, mask=_m)
        else:
            arrays = []
            args = list(args)
            while len(args)>0 and issequence(args[0]):
                arrays.append(args.pop(0))
            res = []
            for x in arrays:
                _d = func(nxasarray(x), *args, **params)
                _m = func(getmaskarray(x), *args, **params)
                res.append(masked_array(_d, mask=_m))
            return res
                
atleast_1d = _fromnxfunction('atleast_1d')     
atleast_2d = _fromnxfunction('atleast_2d')  
atleast_3d = _fromnxfunction('atleast_3d')             

vstack = row_stack = _fromnxfunction('vstack')
hstack = _fromnxfunction('hstack')
column_stack = _fromnxfunction('column_stack')
dstack = _fromnxfunction('dstack')

hsplit = _fromnxfunction('hsplit')

#####--------------------------------------------------------------------------
#---- 
#####--------------------------------------------------------------------------
def flatten_inplace(seq):
    """Flattens a sequence in place."""
    k = 0
    while (k != len(seq)):
        while hasattr(seq[k],'__iter__'):
            seq[k:(k+1)] = seq[k]
        k += 1
    return seq


def apply_along_axis(func1d,axis,arr,*args,**kwargs):
    """ Execute func1d(arr[i],*args) where func1d takes 1-D arrays
        and arr is an N-d array.  i varies so as to apply the function
        along the given axis for each 1-d subarray in arr.
    """
    arr = core.array(arr, copy=False, subok=True)
    nd = arr.ndim
    if axis < 0:
        axis += nd
    if (axis >= nd):
        raise ValueError("axis must be less than arr.ndim; axis=%d, rank=%d."
            % (axis,nd))
    ind = [0]*(nd-1)
    i = numeric.zeros(nd,'O')
    indlist = range(nd)
    indlist.remove(axis)
    i[axis] = slice(None,None)
    outshape = numeric.asarray(arr.shape).take(indlist)
    i.put(indlist, ind)
    j = i.copy()
    res = func1d(arr[tuple(i.tolist())],*args,**kwargs)
    #  if res is a number, then we have a smaller output array
    asscalar = numeric.isscalar(res)
    if not asscalar:
        try:
            len(res)
        except TypeError:
            asscalar = True
    # Note: we shouldn't set the dtype of the output from the first result...
    #...so we force the type to object, and build a list of dtypes
    #...we'll just take the largest, to avoid some downcasting
    dtypes = []
    if asscalar:
        dtypes.append(numeric.asarray(res).dtype)
        outarr = zeros(outshape, object_)
        outarr[tuple(ind)] = res
        Ntot = numeric.product(outshape)
        k = 1
        while k < Ntot:
            # increment the index
            ind[-1] += 1
            n = -1
            while (ind[n] >= outshape[n]) and (n > (1-nd)):
                ind[n-1] += 1
                ind[n] = 0
                n -= 1
            i.put(indlist,ind)
            res = func1d(arr[tuple(i.tolist())],*args,**kwargs)
            outarr[tuple(ind)] = res
            dtypes.append(asarray(res).dtype)
            k += 1
    else:
        res = core.array(res, copy=False, subok=True)
        j = i.copy()
        j[axis] = ([slice(None,None)] * res.ndim)
        j.put(indlist, ind)
        Ntot = numeric.product(outshape)
        holdshape = outshape
        outshape = list(arr.shape)
        outshape[axis] = res.shape
        dtypes.append(asarray(res).dtype)
        outshape = flatten_inplace(outshape)
        outarr = zeros(outshape, object_)
        outarr[tuple(flatten_inplace(j.tolist()))] = res
        k = 1
        while k < Ntot:
            # increment the index
            ind[-1] += 1
            n = -1
            while (ind[n] >= holdshape[n]) and (n > (1-nd)):
                ind[n-1] += 1
                ind[n] = 0
                n -= 1
            i.put(indlist, ind)
            j.put(indlist, ind)
            res = func1d(arr[tuple(i.tolist())],*args,**kwargs)
            outarr[tuple(flatten_inplace(j.tolist()))] = res
            dtypes.append(asarray(res).dtype)
            k += 1
    max_dtypes = numeric.dtype(numeric.asarray(dtypes).max())
    if not hasattr(arr, '_mask'):
        result = numeric.asarray(outarr, dtype=max_dtypes)
    else:
        result = core.asarray(outarr, dtype=max_dtypes)
        result.fill_value = core.default_fill_value(result)
    return result

def average (a, axis=None, weights=None, returned = 0):
    """average(a, axis=None weights=None, returned=False)

    Averages the array over the given axis.  If the axis is None, averages
    over all dimensions of the array.  Equivalent to a.mean(axis)

    If an integer axis is given, this equals:
        a.sum(axis) * 1.0 / size(a, axis)

    If axis is None, this equals:
        a.sum(axis) * 1.0 / a.size

    If weights are given, result is:
        sum(a * weights,axis) / sum(weights,axis),
    where the weights must have a's shape or be 1D with length the
    size of a in the given axis. Integer weights are converted to
    Float.  Not specifying weights is equivalent to specifying
    weights that are all 1.

    If 'returned' is True, return a tuple: the result and the sum of
    the weights or count of values. The shape of these two results
    will be the same.

    Returns masked values instead of ZeroDivisionError if appropriate.
    
    """
    a = asarray(a)
    mask = a.mask
    ash = a.shape
    if ash == ():
        ash = (1,)
    if axis is None:
        if mask is nomask:
            if weights is None:
                n = a.sum(axis=None)
                d = float(a.size)
            else:
                w = filled(weights, 0.0).ravel()
                n = umath.add.reduce(a._data.ravel() * w)
                d = umath.add.reduce(w)
                del w
        else:
            if weights is None:
                n = a.filled(0).sum(axis=None)
                d = umath.add.reduce((-mask).ravel().astype(int_))
            else:
                w = array(filled(weights, 0.0), float, mask=mask).ravel()
                n = add.reduce(a.ravel() * w)
                d = add.reduce(w)
                del w
    else:
        if mask is nomask:
            if weights is None:
                d = ash[axis] * 1.0
                n = add.reduce(a._data, axis, dtype=float_)
            else:
                w = filled(weights, 0.0)
                wsh = w.shape
                if wsh == ():
                    wsh = (1,)
                if wsh == ash:
                    w = numeric.array(w, float_, copy=0)
                    n = add.reduce(a*w, axis)
                    d = add.reduce(w, axis)
                    del w
                elif wsh == (ash[axis],):
                    ni = ash[axis]
                    r = [None]*len(ash)
                    r[axis] = slice(None, None, 1)
                    w = eval ("w["+ repr(tuple(r)) + "] * ones(ash, float)")
                    n = add.reduce(a*w, axis, dtype=float_)
                    d = add.reduce(w, axis, dtype=float_)
                    del w, r
                else:
                    raise ValueError, 'average: weights wrong shape.'
        else:
            if weights is None:
                n = add.reduce(a, axis, dtype=float_)
                d = umath.add.reduce((-mask), axis=axis, dtype=float_)
            else:
                w = filled(weights, 0.0)
                wsh = w.shape
                if wsh == ():
                    wsh = (1,)
                if wsh == ash:
                    w = array(w, dtype=float_, mask=mask, copy=0)
                    n = add.reduce(a*w, axis, dtype=float_)
                    d = add.reduce(w, axis, dtype=float_)
                elif wsh == (ash[axis],):
                    ni = ash[axis]
                    r = [None]*len(ash)
                    r[axis] = slice(None, None, 1)
                    w = eval ("w["+ repr(tuple(r)) + "] * masked_array(ones(ash, float), mask)")
                    n = add.reduce(a*w, axis, dtype=float_)
                    d = add.reduce(w, axis, dtype=float_)
                else:
                    raise ValueError, 'average: weights wrong shape.'
                del w
    if n is masked or d is masked: 
        return masked
    result = n/d
    del n
    
    if isMaskedArray(result):
        if ((axis is None) or (axis==0 and a.ndim == 1)) and \
           (result.mask is nomask):
            result = result._data
        if returned:
            if not isMaskedArray(d):
                d = masked_array(d)
            if isinstance(d, ndarray) and (not d.shape == result.shape):
                d = ones(result.shape, dtype=float_) * d
    if returned:
        return result, d
    else:
        return result
    
#..............................................................................
def compress_rowcols(x, axis=None):
    """Suppresses the rows and/or columns of a 2D array that contains masked values.
    The suppression behavior is selected with the `axis`parameter.
        - If axis is None, rows and columns are suppressed. 
        - If axis is 0, only rows are suppressed. 
        - If axis is 1 or -1, only columns are suppressed.
    Returns a *pure* ndarray.    
    """
    x = asarray(x)
    if x.ndim <> 2:
        raise NotImplementedError, "compress2d works for 2D arrays only."
    m = getmask(x)
    # Nothing is masked: return x
    if m is nomask or not m.any():
        return x._data
    # All is masked: return empty
    if m.all():
        return nxarray([])
    # Builds a list of rows/columns indices
    (idxr, idxc) = (range(len(x)), range(x.shape[1]))
    masked = m.nonzero()
    if not axis:
        for i in function_base.unique(masked[0]):
            idxr.remove(i)
    if axis in [None, 1, -1]:
        for j in function_base.unique(masked[1]):
            idxc.remove(j)
    return x._data[idxr][:,idxc]

def compress_rows(a):
    """Suppresses whole rows of a 2D array that contain masked values."""
    return compress_rowcols(a,0)

def compress_cols(a):
    """Suppresses whole columnss of a 2D array that contain masked values."""
    return compress_rowcols(a,1)

def mask_rowcols(a, axis=None):
    """Masks whole rows and/or columns of a 2D array that contain masked values.
    The masking behavior is selected with the `axis`parameter.
        - If axis is None, rows and columns are suppressed. 
        - If axis is 0, only rows are suppressed. 
        - If axis is 1 or -1, only columns are suppressed.
    Returns a *pure* ndarray.    
    """
    a = asarray(a)
    if a.ndim != 2:
        raise NotImplementedError, "compress2d works for 2D arrays only."
    m = getmask(a)
    # Nothing is masked: return a
    if m is nomask or not m.any():
        return a
    maskedval = m.nonzero()
    a._mask = a._mask.copy()
    if not axis:
        a[function_base.unique(maskedval[0])] = masked
    if axis in [None, 1, -1]:
        a[:,function_base.unique(maskedval[1])] = masked
    return a

def mask_rows(a, axis=None):
    """Masks whole rows of a 2D array that contain masked values."""
    return mask_rowcols(a, 0)

def mask_cols(a, axis=None):
    """Masks whole columns of a 2D array that contain masked values."""
    return mask_rowcols(a, 1)

        
def dot(a,b, strict=False):
    """Returns the dot product of two 2D masked arrays a and b.
    Like the generic numpy equivalent the product sum is over
    the last dimension of a and the second-to-last dimension of b.
    
    If strict is True, masked values are propagated: if a masked value appears 
    in a row or column, the whole row or column is considered masked.
    
    NB: The first argument is not conjugated.
    """
    #TODO: Works only with 2D arrays. There should be a way to get it to run with higher dimension
    if strict and (a.ndim == 2) and (b.ndim == 2):
        a = mask_rows(a)
        b = mask_cols(b)
    #
    d = numpy.dot(filled(a, 0), filled(b, 0))
    #
    am = (~getmaskarray(a))
    bm = (~getmaskarray(b))
    m = ~numpy.dot(am,bm)
    return masked_array(d, mask=m)

#...............................................................................
def mediff1d(array, to_end=None, to_begin=None):
    """Array difference with prefixed and/or appended value."""
    a = masked_array(array, copy=True)
    if a.ndim > 1:
        a.reshape((a.size,))
    (d, m, n) = (a._data, a._mask, a.size-1)
    dd = d[1:]-d[:-1]
    if m is nomask:
        dm = nomask
    else:
        dm = m[1:]-m[:-1]
    #
    if to_end is not None:
        to_end = asarray(to_end)
        nend = to_end.size
        if to_begin is not None:
            to_begin = asarray(to_begin)
            nbegin = to_begin.size
            r_data = numeric.empty((n+nend+nbegin,), dtype=a.dtype)
            r_mask = numeric.zeros((n+nend+nbegin,), dtype=bool_)
            r_data[:nbegin] = to_begin._data
            r_mask[:nbegin] = to_begin._mask
            r_data[nbegin:-nend] = dd
            r_mask[nbegin:-nend] = dm
        else:
            r_data = numeric.empty((n+nend,), dtype=a.dtype)
            r_mask = numeric.zeros((n+nend,), dtype=bool_)
            r_data[:-nend] = dd
            r_mask[:-nend] = dm
        r_data[-nend:] = to_end._data
        r_mask[-nend:] = to_end._mask
    #
    elif to_begin is not None:
        to_begin = asarray(to_begin)
        nbegin = to_begin.size
        r_data = numeric.empty((n+nbegin,), dtype=a.dtype)
        r_mask = numeric.zeros((n+nbegin,), dtype=bool_)
        r_data[:nbegin] = to_begin._data
        r_mask[:nbegin] = to_begin._mask
        r_data[nbegin:] = dd
        r_mask[nbegin:] = dm
    #
    else:
        r_data = dd
        r_mask = dm
    return masked_array(r_data, mask=r_mask)




#####--------------------------------------------------------------------------
#---- --- Concatenation helpers ---
#####--------------------------------------------------------------------------

class mconcatenator(concatenator):
    """Translates slice objects to concatenation along an axis."""

    def __init__(self, axis=0):
        concatenator.__init__(self, axis, matrix=False)

    def __getitem__(self,key):
        if isinstance(key, str):
            raise MAError, "Unavailable for masked array."
        if type(key) is not tuple:
            key = (key,)
        objs = []
        scalars = []
        final_dtypedescr = None
        for k in range(len(key)):
            scalar = False
            if type(key[k]) is slice:
                step = key[k].step
                start = key[k].start
                stop = key[k].stop
                if start is None: 
                    start = 0
                if step is None:
                    step = 1
                if type(step) is type(1j):
                    size = int(abs(step))
                    newobj = function_base.linspace(start, stop, num=size)
                else:
                    newobj = numeric.arange(start, stop, step)
            elif type(key[k]) is str:
                if (key[k] in 'rc'):
                    self.matrix = True
                    self.col = (key[k] == 'c')
                    continue
                try:
                    self.axis = int(key[k])
                    continue
                except (ValueError, TypeError):
                    raise ValueError, "Unknown special directive"
            elif type(key[k]) in numeric.ScalarType:
                newobj = asarray([key[k]])
                scalars.append(k)
                scalar = True
            else:
                newobj = key[k]
            objs.append(newobj)
            if isinstance(newobj, numeric.ndarray) and not scalar:
                if final_dtypedescr is None:
                    final_dtypedescr = newobj.dtype
                elif newobj.dtype > final_dtypedescr:
                    final_dtypedescr = newobj.dtype
        if final_dtypedescr is not None:
            for k in scalars:
                objs[k] = objs[k].astype(final_dtypedescr)
        res = concatenate(tuple(objs),axis=self.axis)
        return self._retval(res)

class mr_class(mconcatenator):
    """Translates slice objects to concatenation along the first axis.

        For example:
        >>> r_[array([1,2,3]), 0, 0, array([4,5,6])]
        array([1, 2, 3, 0, 0, 4, 5, 6])
    """
    def __init__(self):
        mconcatenator.__init__(self, 0)

mr_ = mr_class()

#####--------------------------------------------------------------------------
#---- ---
#####--------------------------------------------------------------------------

def flatnotmasked_edges(a):
    """Finds the indices of the first and last not masked values in a  1D masked array.
    If all values are masked, returns None.
    """
    m = getmask(a)
    if m is nomask or not numpy.any(m):
        return [0,-1]
    unmasked = numeric.flatnonzero(~m)
    if len(unmasked) > 0:
        return unmasked[[0,-1]]
    else:
        return None

def notmasked_edges(a, axis=None):
    """Finds the indices of the first and last not masked values along the given
    axis in a masked array.
    If all values are masked, returns None.
    Otherwise, returns a list of 2 tuples, corresponding to the indices of the
    first and last unmasked values respectively.
    """
    a = asarray(a)
    if axis is None or a.ndim == 1:
        return flatnotmasked_edges(a)
    m = getmask(a)
    idx = array(numpy.indices(a.shape), mask=nxasarray([m]*a.ndim))
    return [tuple([idx[i].min(axis).compressed() for i in range(a.ndim)]),
            tuple([idx[i].max(axis).compressed() for i in range(a.ndim)]),]

def flatnotmasked_contiguous(a):
    """Finds contiguous unmasked data in a flattened masked array.
    Returns a sorted sequence of slices (start index, end index).
    """
    m = getmask(a)
    if m is nomask:
        return (a.size, [0,-1])
    unmasked = numeric.flatnonzero(~m)
    if len(unmasked) == 0:
        return None
    result = []
    for k, group in groupby(enumerate(unmasked), lambda (i,x):i-x):
        tmp = numpy.fromiter((g[1] for g in group), int_)
#        result.append((tmp.size, tuple(tmp[[0,-1]])))
        result.append( slice(tmp[0],tmp[-1]) )
    result.sort()
    return result

def notmasked_contiguous(a, axis=None):
    """Finds contiguous unmasked data in a masked array along the given axis.
    Returns a sorted sequence of slices (start index, end index).
    Note: Only accepts 2D arrays at most.
    """
    a = asarray(a)
    nd = a.ndim
    if nd > 2:
        raise NotImplementedError,"Currently limited to atmost 2D array."
    if axis is None or nd == 1:
        return flatnotmasked_contiguous(a)
    #
    result = []
    #
    other = (axis+1)%2
    idx = [0,0]
    idx[axis] = slice(None,None)
    #
    for i in range(a.shape[other]):
        idx[other] = i
        result.append( flatnotmasked_contiguous(a[idx]) )
    return result
  
################################################################################
if __name__ == '__main__':
    #
    import numpy as N
    from maskedarray.testutils import assert_equal
    if 1:
        n = N.arange(1,7)
        #
        m = [1,0,0,0,0,0]
        a = masked_array(n, mask=m).reshape(2,3)
        b = masked_array(n, mask=m).reshape(3,2)
        c = dot(a,b, True)
        assert_equal(c.mask, [[1,1],[1,0]])
        c = dot(a,b,False)
        assert_equal(c, N.dot(a.filled(0), b.filled(0)))