1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
"""
Generic statistics functions, with support to MA.
:author: Pierre GF Gerard-Marchant
:contact: pierregm_at_uga_edu
:date: $Date: 2007-07-18 20:52:07 -0700 (Wed, 18 Jul 2007) $
:version: $Id: morestats.py 3174 2007-07-19 03:52:07Z pierregm $
"""
__author__ = "Pierre GF Gerard-Marchant ($Author: pierregm $)"
__version__ = '1.0'
__revision__ = "$Revision: 3174 $"
__date__ = '$Date: 2007-07-18 20:52:07 -0700 (Wed, 18 Jul 2007) $'
import numpy
from numpy import bool_, float_, int_, ndarray, \
sqrt,\
arange, empty,\
r_
from numpy import array as narray
import numpy.core.numeric as numeric
from numpy.core.numeric import concatenate
import maskedarray as MA
from maskedarray.core import masked, nomask, MaskedArray, masked_array
from maskedarray.extras import apply_along_axis, dot
from maskedarray.mstats import trim_both, trimmed_stde, mquantiles, mmedian, stde_median
from scipy.stats.distributions import norm, beta, t, binom
from scipy.stats.morestats import find_repeats
__all__ = ['hdquantiles', 'hdquantiles_sd',
'trimmed_mean_ci', 'mjci', 'rank_data']
#####--------------------------------------------------------------------------
#---- --- Quantiles ---
#####--------------------------------------------------------------------------
def hdquantiles(data, prob=list([.25,.5,.75]), axis=None, var=False,):
"""Computes quantile estimates with the Harrell-Davis method, where the estimates
are calculated as a weighted linear combination of order statistics.
If var=True, the variance of the estimate is also returned.
Depending on var, returns a (p,) array of quantiles or a (2,p) array of quantiles
and variances.
:Inputs:
data: ndarray
Data array.
prob: Sequence
List of quantiles to compute.
axis : integer *[None]*
Axis along which to compute the quantiles. If None, use a flattened array.
var : boolean *[False]*
Whether to return the variance of the estimate.
:Note:
The function is restricted to 2D arrays.
"""
def _hd_1D(data,prob,var):
"Computes the HD quantiles for a 1D array."
xsorted = numpy.squeeze(numpy.sort(data.compressed().view(ndarray)))
n = len(xsorted)
#.........
hd = empty((2,len(prob)), float_)
if n < 2:
hd.flat = numpy.nan
if var:
return hd
return hd[0]
#.........
v = arange(n+1) / float(n)
betacdf = beta.cdf
for (i,p) in enumerate(prob):
_w = betacdf(v, (n+1)*p, (n+1)*(1-p))
w = _w[1:] - _w[:-1]
hd_mean = dot(w, xsorted)
hd[0,i] = hd_mean
#
hd[1,i] = dot(w, (xsorted-hd_mean)**2)
#
hd[0, prob == 0] = xsorted[0]
hd[0, prob == 1] = xsorted[-1]
if var:
hd[1, prob == 0] = hd[1, prob == 1] = numpy.nan
return hd
return hd[0]
# Initialization & checks ---------
data = masked_array(data, copy=False, dtype=float_)
p = numpy.array(prob, copy=False, ndmin=1)
# Computes quantiles along axis (or globally)
if (axis is None):
result = _hd_1D(data, p, var)
else:
assert data.ndim <= 2, "Array should be 2D at most !"
result = apply_along_axis(_hd_1D, axis, data, p, var)
#
return masked_array(result, mask=numpy.isnan(result))
#..............................................................................
def hdquantiles_sd(data, prob=list([.25,.5,.75]), axis=None):
"""Computes the standard error of the Harrell-Davis quantile estimates by jackknife.
:Inputs:
data: ndarray
Data array.
prob: Sequence
List of quantiles to compute.
axis : integer *[None]*
Axis along which to compute the quantiles. If None, use a flattened array.
var : boolean *[False]*
Whether to return the variance of the estimate.
stderr : boolean *[False]*
Whether to return the standard error of the estimate.
:Note:
The function is restricted to 2D arrays.
"""
def _hdsd_1D(data,prob):
"Computes the std error for 1D arrays."
xsorted = numpy.sort(data.compressed())
n = len(xsorted)
#.........
hdsd = empty(len(prob), float_)
if n < 2:
hdsd.flat = numpy.nan
#.........
vv = arange(n) / float(n-1)
betacdf = beta.cdf
#
for (i,p) in enumerate(prob):
_w = betacdf(vv, (n+1)*p, (n+1)*(1-p))
w = _w[1:] - _w[:-1]
mx_ = numpy.fromiter([dot(w,xsorted[r_[range(0,k),
range(k+1,n)].astype(int_)])
for k in range(n)], dtype=float_)
mx_var = numpy.array(mx_.var(), copy=False, ndmin=1) * n / float(n-1)
hdsd[i] = float(n-1) * sqrt(numpy.diag(mx_var).diagonal() / float(n))
return hdsd
# Initialization & checks ---------
data = masked_array(data, copy=False, dtype=float_)
p = numpy.array(prob, copy=False, ndmin=1)
# Computes quantiles along axis (or globally)
if (axis is None):
result = _hdsd_1D(data.compressed(), p)
else:
assert data.ndim <= 2, "Array should be 2D at most !"
result = apply_along_axis(_hdsd_1D, axis, data, p)
#
return masked_array(result, mask=numpy.isnan(result)).ravel()
#####--------------------------------------------------------------------------
#---- --- Confidence intervals ---
#####--------------------------------------------------------------------------
def trimmed_mean_ci(data, proportiontocut=0.2, alpha=0.05, axis=None):
"""Returns the selected confidence interval of the trimmed mean along the
given axis.
:Inputs:
data : sequence
Input data. The data is transformed to a masked array
proportiontocut : float *[0.2]*
Proportion of the data to cut from each side of the data .
As a result, (2*proportiontocut*n) values are actually trimmed.
alpha : float *[0.05]*
Confidence level of the intervals
axis : integer *[None]*
Axis along which to cut.
"""
data = masked_array(data, copy=False)
trimmed = trim_both(data, proportiontocut=proportiontocut, axis=axis)
tmean = trimmed.mean(axis)
tstde = trimmed_stde(data, proportiontocut=proportiontocut, axis=axis)
df = trimmed.count(axis) - 1
tppf = t.ppf(1-alpha/2.,df)
return numpy.array((tmean - tppf*tstde, tmean+tppf*tstde))
#..............................................................................
def mjci(data, prob=[0.25,0.5,0.75], axis=None):
"""Returns the Maritz-Jarrett estimators of the standard error of selected
experimental quantiles of the data.
:Input:
data : sequence
Input data.
prob : sequence *[0.25,0.5,0.75]*
Sequence of quantiles whose standard error must be estimated.
axis : integer *[None]*
Axis along which to compute the standard error.
"""
def _mjci_1D(data, p):
data = data.compressed()
sorted = numpy.sort(data)
n = data.size
prob = (numpy.array(p) * n + 0.5).astype(int_)
betacdf = beta.cdf
#
mj = empty(len(prob), float_)
x = arange(1,n+1, dtype=float_) / n
y = x - 1./n
for (i,m) in enumerate(prob):
(m1,m2) = (m-1, n-m)
W = betacdf(x,m-1,n-m) - betacdf(y,m-1,n-m)
C1 = numpy.dot(W,sorted)
C2 = numpy.dot(W,sorted**2)
mj[i] = sqrt(C2 - C1**2)
return mj
#
data = masked_array(data, copy=False)
assert data.ndim <= 2, "Array should be 2D at most !"
p = numpy.array(prob, copy=False, ndmin=1)
# Computes quantiles along axis (or globally)
if (axis is None):
return _mjci_1D(data, p)
else:
return apply_along_axis(_mjci_1D, axis, data, p)
#..............................................................................
def mquantiles_cimj(data, prob=[0.25,0.50,0.75], alpha=0.05, axis=None):
"""Computes the alpha confidence interval for the selected quantiles of the
data, with Maritz-Jarrett estimators.
:Input:
data : sequence
Input data.
prob : sequence *[0.25,0.5,0.75]*
Sequence of quantiles whose standard error must be estimated.
alpha : float *[0.05]*
Confidence degree.
axis : integer *[None]*
Axis along which to compute the standard error.
"""
alpha = min(alpha, 1-alpha)
z = norm.ppf(1-alpha/2.)
xq = mquantiles(data, prob, alphap=0, betap=0, axis=axis)
smj = mjci(data, prob, axis=axis)
return (xq - z * smj, xq + z * smj)
#.............................................................................
def median_cihs(data, alpha=0.05, axis=None):
"""Computes the alpha-level confidence interval for the median of the data,
following the Hettmasperger-Sheather method.
:Inputs:
data : sequence
Input data. Masked values are discarded. The input should be 1D only
alpha : float *[0.05]*
Confidence degree.
"""
def _cihs_1D(data, alpha):
data = numpy.sort(data.compressed())
n = len(data)
alpha = min(alpha, 1-alpha)
k = int(binom._ppf(alpha/2., n, 0.5))
gk = binom.cdf(n-k,n,0.5) - binom.cdf(k-1,n,0.5)
if gk < 1-alpha:
k -= 1
gk = binom.cdf(n-k,n,0.5) - binom.cdf(k-1,n,0.5)
gkk = binom.cdf(n-k-1,n,0.5) - binom.cdf(k,n,0.5)
I = (gk - 1 + alpha)/(gk - gkk)
lambd = (n-k) * I / float(k + (n-2*k)*I)
lims = (lambd*data[k] + (1-lambd)*data[k-1],
lambd*data[n-k-1] + (1-lambd)*data[n-k])
return lims
data = masked_array(data, copy=False)
# Computes quantiles along axis (or globally)
if (axis is None):
result = _cihs_1D(data.compressed(), p, var)
else:
assert data.ndim <= 2, "Array should be 2D at most !"
result = apply_along_axis(_cihs_1D, axis, data, alpha)
#
return result
#..............................................................................
def compare_medians_ms(group_1, group_2, axis=None):
"""Compares the medians from two independent groups along the given axis.
Returns an array of p values.
The comparison is performed using the McKean-Schrader estimate of the standard
error of the medians.
:Inputs:
group_1 : sequence
First dataset.
group_2 : sequence
Second dataset.
axis : integer *[None]*
Axis along which the medians are estimated. If None, the arrays are flattened.
"""
(med_1, med_2) = (mmedian(group_1, axis=axis), mmedian(group_2, axis=axis))
(std_1, std_2) = (stde_median(group_1, axis=axis),
stde_median(group_2, axis=axis))
W = abs(med_1 - med_2) / sqrt(std_1**2 + std_2**2)
return 1 - norm.cdf(W)
#####--------------------------------------------------------------------------
#---- --- Ranking ---
#####--------------------------------------------------------------------------
#..............................................................................
def rank_data(data, axis=None, use_missing=False):
"""Returns the rank (also known as order statistics) of each data point
along the given axis.
If some values are tied, their rank is averaged.
If some values are masked, their rank is set to 0 if use_missing is False, or
set to the average rank of the unmasked values if use_missing is True.
:Inputs:
data : sequence
Input data. The data is transformed to a masked array
axis : integer *[None]*
Axis along which to perform the ranking. If None, the array is first
flattened. An exception is raised if the axis is specified for arrays
with a dimension larger than 2
use_missing : boolean *[False]*
Flag indicating whether the masked values have a rank of 0 (False) or
equal to the average rank of the unmasked values (True)
"""
#
def _rank1d(data, use_missing=False):
n = data.count()
rk = numpy.empty(data.size, dtype=float_)
idx = data.argsort()
rk[idx[:n]] = numpy.arange(1,n+1)
#
if use_missing:
rk[idx[n:]] = (n+1)/2.
else:
rk[idx[n:]] = 0
#
repeats = find_repeats(data)
for r in repeats[0]:
condition = (data==r).filled(False)
rk[condition] = rk[condition].mean()
return rk
#
data = masked_array(data, copy=False)
if axis is None:
if data.ndim > 1:
return _rank1d(data.ravel(), use_missing).reshape(data.shape)
else:
return _rank1d(data, use_missing)
else:
return apply_along_axis(_rank1d, axis, data, use_missing)
###############################################################################
if __name__ == '__main__':
data = numpy.arange(100).reshape(4,25)
# tmp = hdquantiles(data, prob=[0.25,0.75,0.5], axis=1, var=False)
|