File: mrecords.py

package info (click to toggle)
python-scipy 0.6.0-12
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 32,016 kB
  • ctags: 46,675
  • sloc: cpp: 124,854; ansic: 110,614; python: 108,664; fortran: 76,260; objc: 424; makefile: 384; sh: 10
file content (731 lines) | stat: -rw-r--r-- 28,163 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
"""mrecords
Defines a class of record arrays supporting masked arrays.

:author: Pierre Gerard-Marchant
:contact: pierregm_at_uga_dot_edu
:version: $Id: mrecords.py 3245 2007-08-15 13:38:19Z pierregm $
"""
__author__ = "Pierre GF Gerard-Marchant ($Author: pierregm $)"
__version__ = '1.0'
__revision__ = "$Revision: 3245 $"
__date__     = '$Date: 2007-08-15 06:38:19 -0700 (Wed, 15 Aug 2007) $'

import sys
import types

import numpy
from numpy import bool_, complex_, float_, int_, str_, object_
import numpy.core.numeric as numeric
import numpy.core.numerictypes as ntypes
from numpy.core.defchararray import chararray
from numpy.core.records import find_duplicate

from numpy.core.records import format_parser, record, recarray
from numpy.core.records import fromarrays as recfromarrays

ndarray = numeric.ndarray
_byteorderconv = numpy.core.records._byteorderconv
_typestr = ntypes._typestr

import maskedarray as MA
from maskedarray import masked, nomask, mask_or, filled, getmask, getmaskarray, \
    masked_array, make_mask
from maskedarray import MaskedArray
from maskedarray.core import default_fill_value, masked_print_option

import warnings

reserved_fields = ['_data','_mask','_fieldmask', 'dtype']

def _getformats(data):
    """Returns the formats of each array of arraylist as a comma-separated 
    string."""
    if hasattr(data,'dtype'):
        return ",".join([desc[1] for desc in data.dtype.descr])
    
    formats = ''
    for obj in data:
        obj = numeric.asarray(obj)
#        if not isinstance(obj, ndarray):
##        if not isinstance(obj, ndarray):
#            raise ValueError, "item in the array list must be an ndarray."
        formats += _typestr[obj.dtype.type]
        if issubclass(obj.dtype.type, ntypes.flexible):
            formats += `obj.itemsize`
        formats += ','
    return formats[:-1]    

def _checknames(descr, names=None):
    """Checks that the field names of the descriptor `descr` are not some 
    reserved keywords. If this is the case, a default 'f%i' is substituted.
    If the argument `names` is not None, updates the field names to valid names.    
    """    
    ndescr = len(descr)
    default_names = ['f%i' % i for i in range(ndescr)]
    if names is None:
        new_names = default_names
    else:
        if isinstance(names, (tuple, list)):
            new_names = names
        elif isinstance(names, str):
            new_names = names.split(',')
        else:
            raise NameError, "illegal input names %s" % `names`
        nnames = len(new_names)
        if nnames < ndescr:
            new_names += default_names[nnames:]
    ndescr = []
    for (n, d, t) in zip(new_names, default_names, descr.descr):
        if n in reserved_fields:
            if t[0] in reserved_fields: 
                ndescr.append((d,t[1]))
            else:
                ndescr.append(t)
        else:
            ndescr.append((n,t[1]))
    return numeric.dtype(ndescr)
    


class MaskedRecords(MaskedArray, object):
    """
    
:IVariables:
    - `__localfdict` : Dictionary
        Dictionary of local fields (`f0_data`, `f0_mask`...)
    - `__globalfdict` : Dictionary
        Dictionary of global fields, as the combination of a `_data` and a `_mask`.
        (`f0`)
    """
    _defaultfieldmask = nomask
    _defaulthardmask = False
    def __new__(cls, data, mask=nomask, dtype=None, 
                hard_mask=False, fill_value=None,
#                offset=0, strides=None,
                formats=None, names=None, titles=None,
                byteorder=None, aligned=False):
        # Get the new descriptor ................
        if dtype is not None:
            descr = numeric.dtype(dtype)
        else:
            if formats is None:
                formats = _getformats(data)
            parsed = format_parser(formats, names, titles, aligned, byteorder)
            descr = parsed._descr
        if names is not None:
            descr = _checknames(descr,names)
        _names = descr.names    
        mdescr = [(n,'|b1') for n in _names]
        # get the shape .........................
        try:
            shape = numeric.asarray(data[0]).shape
        except IndexError:
            shape = len(data.dtype)            
        if isinstance(shape, int):
            shape = (shape,)
        # Construct the _data recarray ..........
        if isinstance(data, record):
            _data = numeric.asarray(data).view(recarray)
            _fieldmask = mask
        elif isinstance(data, MaskedRecords):
            _data = data._data
            _fieldmask = data._fieldmask
        elif isinstance(data, recarray):
            _data = data
            if mask is nomask:
                _fieldmask = data.astype(mdescr)
                _fieldmask.flat = tuple([False]*len(mdescr))
            else:
                _fieldmask = mask
        elif (isinstance(data, (tuple, numpy.void)) or\
              hasattr(data,'__len__') and isinstance(data[0], (tuple, numpy.void))):
            data = numeric.array(data, dtype=descr).view(recarray)
            _data = data
            if mask is nomask:
                _fieldmask = data.astype(mdescr)
                _fieldmask.flat = tuple([False]*len(mdescr))
            else:
                _fieldmask = mask
        else:
            _data = recarray(shape, dtype=descr)
            _fieldmask = recarray(shape, dtype=mdescr)
            for (n,v) in zip(_names, data):
                _data[n] = numeric.asarray(v).view(ndarray)
                _fieldmask[n] = getmaskarray(v)
        #........................................
        _data = _data.view(cls)
        _data._fieldmask = _fieldmask
        _data._hardmask = hard_mask
        if fill_value is None:
            _data._fill_value = [default_fill_value(numeric.dtype(d[1]))
                                 for d in descr.descr]
        else:
            _data._fill_value = fill_value
        return _data
        
    def __array_finalize__(self,obj):
        if isinstance(obj, MaskedRecords):
            self.__dict__.update(_fieldmask=obj._fieldmask,
                                 _hardmask=obj._hardmask,
                                 _fill_value=obj._fill_value                                 
                                 )
        else:     
            self.__dict__.update(_fieldmask = nomask,
                                 _hardmask = False,
                                 fill_value = None
                                )
        return
    
    def _getdata(self):
        "Returns the data as a recarray."
        return self.view(recarray)
    _data = property(fget=_getdata)
    
    #......................................................
    def __getattribute__(self, attr):
        try:
            # Returns a generic attribute
            return object.__getattribute__(self,attr)
        except AttributeError: 
            # OK, so attr must be a field name
            pass
        # Get the list of fields ......
        _names = self.dtype.names
        if attr in _names:
            _data = self._data
            _mask = self._fieldmask
            obj = numeric.asarray(_data.__getattribute__(attr)).view(MaskedArray)
            obj.__setmask__(_mask.__getattribute__(attr))
            if (obj.ndim == 0) and obj._mask:
                return masked
            return obj
        raise AttributeError,"No attribute '%s' !" % attr
            
    def __setattr__(self, attr, val):
        newattr = attr not in self.__dict__
        try:
            # Is attr a generic attribute ?
            ret = object.__setattr__(self, attr, val)
        except:
            # Not a generic attribute: exit if it's not a valid field
            fielddict = self.dtype.names or {}
            if attr not in fielddict:
                exctype, value = sys.exc_info()[:2]
                raise exctype, value
        else:
            if attr not in list(self.dtype.names) + ['_mask']:
                return ret
            if newattr:         # We just added this one
                try:            #  or this setattr worked on an internal
                                #  attribute. 
                    object.__delattr__(self, attr)
                except:
                    return ret
        # Case #1.: Basic field ............
        base_fmask = self._fieldmask
        _names = self.dtype.names
        if attr in _names:
            fval = filled(val)
            mval = getmaskarray(val)
            if self._hardmask:
                mval = mask_or(mval, base_fmask.__getattr__(attr))
            self._data.__setattr__(attr, fval)
            base_fmask.__setattr__(attr, mval)
            return
        elif attr == '_mask':
            self.__setmask__(val)
            return
    #............................................
    def __getitem__(self, indx):
        """Returns all the fields sharing the same fieldname base.
    The fieldname base is either `_data` or `_mask`."""
        _localdict = self.__dict__
        _data = self._data
        # We want a field ........
        if isinstance(indx, str):           
            obj = _data[indx].view(MaskedArray)
            obj._set_mask(_localdict['_fieldmask'][indx])
            return obj
        # We want some elements ..
        # First, the data ........
        obj = ndarray.__getitem__(self, indx)
        if isinstance(obj, numpy.void):
            obj = self.__class__(obj, dtype=self.dtype)
        else:
            obj = obj.view(type(self))
        obj._fieldmask = numpy.asarray(_localdict['_fieldmask'][indx]).view(recarray)
        return obj
    #............................................
    def __setitem__(self, indx, value):
        """Sets the given record to value."""
        MaskedArray.__setitem__(self, indx, value)
        
#    def __getslice__(self, i, j):
#        """Returns the slice described by [i,j]."""
#        _localdict = self.__dict__
#        return MaskedRecords(_localdict['_data'][i:j], 
#                        mask=_localdict['_fieldmask'][i:j],
#                       dtype=self.dtype)      
#        
    def __setslice__(self, i, j, value):
        """Sets the slice described by [i,j] to `value`."""
        _localdict = self.__dict__
        d = self._data
        m = _localdict['_fieldmask']
        names = self.dtype.names
        if value is masked:
            for n in names:
                m[i:j][n] = True
        elif not self._hardmask:
            fval = filled(value)
            mval = getmaskarray(value)
            for n in names:
                d[n][i:j] = fval
                m[n][i:j] = mval
        else:
            mindx = getmaskarray(self)[i:j]
            dval = numeric.asarray(value)
            valmask = getmask(value)
            if valmask is nomask:
                for n in names:
                    mval = mask_or(m[n][i:j], valmask)
                    d[n][i:j][~mval] = value
            elif valmask.size > 1:
                for n in names:
                    mval = mask_or(m[n][i:j], valmask)
                    d[n][i:j][~mval] = dval[~mval]
                    m[n][i:j] = mask_or(m[n][i:j], mval) 
        self._fieldmask = m
        
    #.....................................................           
    def __setmask__(self, mask):
        names = self.dtype.names
        fmask = self.__dict__['_fieldmask']
        newmask = make_mask(mask, copy=False)
#        self.unshare_mask()
        if self._hardmask:
            for n in names:
                fmask[n].__ior__(newmask)
        else:
            for n in names:
                fmask[n].flat = newmask
                
    def _getmask(self):
        """Returns the mask of the mrecord: a record is masked when all the fields
are masked."""
        if self.size > 1:
            return self._fieldmask.view((bool_, len(self.dtype))).all(1)
                
    _setmask = __setmask__    
    _mask = property(fget=_getmask, fset=_setmask)
        
    #......................................................
    def __str__(self):
        """x.__str__() <==> str(x)
Calculates the string representation, using masked for fill if it is enabled. 
Otherwise, fills with fill value.
        """
        if self.size > 1:
            mstr = ["(%s)" % ",".join([str(i) for i in s])  
                    for s in zip(*[getattr(self,f) for f in self.dtype.names])]
            return "[%s]" % ", ".join(mstr)
        else:
            mstr = numeric.asarray(self._data.item(), dtype=object_)
            mstr[list(self._fieldmask)] = masked_print_option
            return str(mstr)
    
    def __repr__(self):
        """x.__repr__() <==> repr(x)
Calculates the repr representation, using masked for fill if it is enabled. 
Otherwise fill with fill value.
        """
        _names = self.dtype.names
        fmt = "%%%is : %%s" % (max([len(n) for n in _names])+4,)
        reprstr = [fmt % (f,getattr(self,f)) for f in self.dtype.names]
        reprstr.insert(0,'masked_records(')
        reprstr.extend([fmt % ('    fill_value', self._fill_value), 
                         '              )'])
        return str("\n".join(reprstr))
    #......................................................
    def view(self, obj):
        """Returns a view of the mrecarray."""
        try:
            if issubclass(obj, ndarray):
                return ndarray.view(self, obj)
        except TypeError:
            pass
        dtype = numeric.dtype(obj)
        if dtype.fields is None:
            return self.__array__().view(dtype)
        return ndarray.view(self, obj)            
    #......................................................
    def filled(self, fill_value=None):
        """Returns an array of the same class as `_data`,
 with masked values filled with `fill_value`.
Subclassing is preserved.
        
If `fill_value` is None, uses self.fill_value.
        """
        _localdict = self.__dict__
        d = self._data
        fm = _localdict['_fieldmask']
        if not numeric.asarray(fm, dtype=bool_).any():
            return d
        #
        if fill_value is None:
            value = _localdict['_fill_value']
        else:
            value = fill_value
            if numeric.size(value) == 1:
                value = [value,] * len(self.dtype)
        #
        if self is masked:
            result = numeric.asanyarray(value)
        else:
            result = d.copy()
            for (n, v) in zip(d.dtype.names, value):
                numpy.putmask(numeric.asarray(result[n]), 
                              numeric.asarray(fm[n]), v)
        return result
    #............................................
    def harden_mask(self):
        "Forces the mask to hard"
        self._hardmask = True
    def soften_mask(self):
        "Forces the mask to soft"
        self._hardmask = False
    #.............................................
    def copy(self):
        """Returns a copy of the masked record."""
        _localdict = self.__dict__
        return MaskedRecords(self._data.copy(),
                        mask=_localdict['_fieldmask'].copy(),
                       dtype=self.dtype)
    #.............................................


#####---------------------------------------------------------------------------
#---- --- Constructors ---
#####---------------------------------------------------------------------------

def fromarrays(arraylist, dtype=None, shape=None, formats=None,
               names=None, titles=None, aligned=False, byteorder=None):
    """Creates a mrecarray from a (flat) list of masked arrays.

:Parameters:
    - `arraylist` : Sequence
      A list of (masked) arrays. Each element of the sequence is first converted
      to a masked array if needed. If a 2D array is passed as argument, it is
      processed line by line
    - `dtype` : numeric.dtype
      Data type descriptor.
    - `shape` : Integer *[None]*
      Number of records. If None, `shape` is defined from the shape of the first
      array in the list.
    - `formats` :
      (Description to write)
    - `names` : 
      (description to write)
    - `titles`:
      (Description to write)
    - `aligned`: Boolen *[False]*
      (Description to write, not used anyway)   
    - `byteorder`: Boolen *[None]*
      (Description to write, not used anyway)
       

    """
    arraylist = [MA.asarray(x) for x in arraylist]
    # Define/check the shape.....................
    if shape is None or shape == 0:
        shape = arraylist[0].shape
    if isinstance(shape, int):
        shape = (shape,)
    # Define formats from scratch ...............
    if formats is None and dtype is None:
        formats = _getformats(arraylist)
    # Define the dtype ..........................
    if dtype is not None:
        descr = numeric.dtype(dtype)
        _names = descr.names
    else:
        parsed = format_parser(formats, names, titles, aligned, byteorder)
        _names = parsed._names
        descr = parsed._descr
    # Determine shape from data-type.............
    if len(descr) != len(arraylist):
        msg = "Mismatch between the number of fields (%i) and the number of "\
              "arrays (%i)"
        raise ValueError, msg % (len(descr), len(arraylist))
    d0 = descr[0].shape
    nn = len(d0)
    if nn > 0:
        shape = shape[:-nn]
    # Make sure the shape is the correct one ....
    for k, obj in enumerate(arraylist):
        nn = len(descr[k].shape)
        testshape = obj.shape[:len(obj.shape)-nn]
        if testshape != shape:
            raise ValueError, "Array-shape mismatch in array %d" % k
    # Reconstruct the descriptor, by creating a _data and _mask version
    return MaskedRecords(arraylist, dtype=descr)
#..............................................................................
def fromrecords(reclist, dtype=None, shape=None, formats=None, names=None,
                titles=None, aligned=False, byteorder=None):
    """Creates a MaskedRecords from a list of records.

    The data in the same field can be heterogeneous, they will be promoted
    to the highest data type.  This method is intended for creating
    smaller record arrays.  If used to create large array without formats
    defined, it can be slow.

    If formats is None, then this will auto-detect formats. Use a list of
    tuples rather than a list of lists for faster processing.
    """    
    # reclist is in fact a mrecarray .................
    if isinstance(reclist, MaskedRecords):
        mdescr = reclist.dtype
        shape = reclist.shape
        return MaskedRecords(reclist, dtype=mdescr)
    # No format, no dtype: create from to arrays .....
    nfields = len(reclist[0])
    if formats is None and dtype is None:  # slower
        if isinstance(reclist, recarray):
            arrlist = [reclist.field(i) for i in range(len(reclist.dtype))]
            if names is None:
                names = reclist.dtype.names
        else:
            obj = numeric.array(reclist,dtype=object)
            arrlist = [numeric.array(obj[...,i].tolist()) 
                               for i in xrange(nfields)]
        return MaskedRecords(arrlist, formats=formats, names=names, 
                             titles=titles, aligned=aligned, byteorder=byteorder)
    # Construct the descriptor .......................
    if dtype is not None:
        descr = numeric.dtype(dtype)
        _names = descr.names
    else:
        parsed = format_parser(formats, names, titles, aligned, byteorder)
        _names = parsed._names
        descr = parsed._descr

    try:
        retval = numeric.array(reclist, dtype = descr).view(recarray)
    except TypeError:  # list of lists instead of list of tuples
        if (shape is None or shape == 0):
            shape = len(reclist)*2
        if isinstance(shape, (int, long)):
            shape = (shape*2,)
        if len(shape) > 1:
            raise ValueError, "Can only deal with 1-d array."
        retval = recarray(shape, mdescr)
        for k in xrange(retval.size):
            retval[k] = tuple(reclist[k])
        return MaskedRecords(retval, dtype=descr)
    else:
        if shape is not None and retval.shape != shape:
            retval.shape = shape
    #
    return MaskedRecords(retval, dtype=descr)

def _guessvartypes(arr):        
    """Tries to guess the dtypes of the str_ ndarray `arr`, by testing element-wise
    conversion. Returns a list of dtypes.
    The array is first converted to ndarray. If the array is 2D, the test is 
    performed on the first line. An exception is raised if the file is 3D or more.
    """
    vartypes = []
    arr = numeric.asarray(arr)
    if len(arr.shape) == 2 :
        arr = arr[0]
    elif len(arr.shape) > 2:
        raise ValueError, "The array should be 2D at most!"
    # Start the conversion loop .......
    for f in arr:
        try:
            val = int(f)
        except ValueError:
            try:
                val = float(f)
            except ValueError:
                try: 
                    val = complex(f)
                except ValueError:
                    vartypes.append(arr.dtype)
                else:
                    vartypes.append(complex_)
            else:
                vartypes.append(float_)
        else:
            vartypes.append(int_)
    return vartypes

def openfile(fname):
    "Opens the file handle of file `fname`"
    # A file handle ...................
    if hasattr(fname, 'readline'):
        return fname
    # Try to open the file and guess its type
    try:
        f = open(fname)
    except IOError:
        raise IOError, "No such file: '%s'" % fname
    if f.readline()[:2] != "\\x":
        f.seek(0,0)
        return f
    raise NotImplementedError, "Wow, binary file" 
    

def fromtextfile(fname, delimitor=None, commentchar='#', missingchar='',
                 varnames=None, vartypes=None):
    """Creates a mrecarray from data stored in the file `filename`.

:Parameters:
    - `filename` : file name/handle
      Handle of an opened file.  
    - `delimitor` : Character *None*
      Alphanumeric character used to separate columns in the file.
      If None, any (group of) white spacestring(s) will be used.
    - `commentchar` : String *['#']*
      Alphanumeric character used to mark the start of a comment.
    - `missingchar` : String *['']*
      String indicating missing data, and used to create the masks.
    - `varnames` : Sequence *[None]*
      Sequence of the variable names. If None, a list will be created from
      the first non empty line of the file.
    - `vartypes` : Sequence *[None]*
      Sequence of the variables dtypes. If None, the sequence will be estimated
      from the first non-commented line.  
    
    
    Ultra simple: the varnames are in the header, one line"""
    # Try to open the file ......................
    f = openfile(fname)
    # Get the first non-empty line as the varnames
    while True:
        line = f.readline()
        firstline = line[:line.find(commentchar)].strip()
        _varnames = firstline.split(delimitor)
        if len(_varnames) > 1:
            break
    if varnames is None:
        varnames = _varnames
    # Get the data ..............................
    _variables = MA.asarray([line.strip().split(delimitor) for line in f
                                  if line[0] != commentchar and len(line) > 1])
    (_, nfields) = _variables.shape
    # Try to guess the dtype ....................
    if vartypes is None:
        vartypes = _guessvartypes(_variables[0])
    else:
        vartypes = [numeric.dtype(v) for v in vartypes]
        if len(vartypes) != nfields:
            msg = "Attempting to %i dtypes for %i fields!"
            msg += " Reverting to default."
            warnings.warn(msg % (len(vartypes), nfields))
            vartypes = _guessvartypes(_variables[0])
    # Construct the descriptor ..................
    mdescr = [(n,f) for (n,f) in zip(varnames, vartypes)]
    # Get the data and the mask .................
    # We just need a list of masked_arrays. It's easier to create it like that:
    _mask = (_variables.T == missingchar)
    _datalist = [masked_array(a,mask=m,dtype=t)
                     for (a,m,t) in zip(_variables.T, _mask, vartypes)]
    return MaskedRecords(_datalist, dtype=mdescr)

#....................................................................
def addfield(mrecord, newfield, newfieldname=None):
    """Adds a new field to the masked record array, using `newfield` as data
and `newfieldname` as name. If `newfieldname` is None, the new field name is
set to 'fi', where `i` is the number of existing fields.
    """
    _data = mrecord._data
    _mask = mrecord._fieldmask
    if newfieldname is None or newfieldname in reserved_fields:
        newfieldname = 'f%i' % len(_data.dtype)
    newfield = MA.asarray(newfield)
    # Get the new data ............
    # Create a new empty recarray
    newdtype = numeric.dtype(_data.dtype.descr + \
                             [(newfieldname, newfield.dtype)])
    newdata = recarray(_data.shape, newdtype)
    # Add the exisintg field
    [newdata.setfield(_data.getfield(*f),*f) 
         for f in _data.dtype.fields.values()]
    # Add the new field
    newdata.setfield(newfield._data, *newdata.dtype.fields[newfieldname])
    newdata = newdata.view(MaskedRecords)
    # Get the new mask .............
    # Create a new empty recarray
    newmdtype = numeric.dtype([(n,bool_) for n in newdtype.names])
    newmask = recarray(_data.shape, newmdtype)
    # Add the old masks
    [newmask.setfield(_mask.getfield(*f),*f)
         for f in _mask.dtype.fields.values()]
    # Add the mask of the new field
    newmask.setfield(getmaskarray(newfield), 
                     *newmask.dtype.fields[newfieldname])
    newdata._fieldmask = newmask
    return newdata
        
################################################################################
if __name__ == '__main__':
    import numpy as N
    from maskedarray.testutils import assert_equal
    if 1:
        d = N.arange(5)
        m = MA.make_mask([1,0,0,1,1])
        base_d = N.r_[d,d[::-1]].reshape(2,-1).T
        base_m = N.r_[[m, m[::-1]]].T
        base = MA.array(base_d, mask=base_m).T
        mrecord = fromarrays(base,dtype=[('a',N.float_),('b',N.float_)])
        mrec = MaskedRecords(mrecord.copy())
        #
        mrec.a[3:] = 5
        assert_equal(mrec.a, [0,1,2,5,5])
        assert_equal(mrec.a._mask, [1,0,0,0,0])
        #
        mrec.b[3:] = masked
        assert_equal(mrec.b, [4,3,2,1,0])
        assert_equal(mrec.b._mask, [1,1,0,1,1])
        #
        mrec[:2] = masked
        assert_equal(mrec._mask, [1,1,0,0,0])
        mrec[-1] = masked
        assert_equal(mrec._mask, [1,1,0,0,1])
    if 1:
        nrec = N.core.records.fromarrays(N.r_[[d,d[::-1]]],
                                         dtype=[('a',N.float_),('b',N.float_)])
        mrec = mrecord
        #....................
        mrecfr = fromrecords(nrec)
        assert_equal(mrecfr.a, mrec.a)
        assert_equal(mrecfr.dtype, mrec.dtype)
        #....................
        tmp = mrec[::-1] #.tolist()
        mrecfr = fromrecords(tmp)
        assert_equal(mrecfr.a, mrec.a[::-1])
        #....................        
        mrecfr = fromrecords(nrec.tolist(), names=nrec.dtype.names)
        assert_equal(mrecfr.a, mrec.a)
        assert_equal(mrecfr.dtype, mrec.dtype)
    if 1:
        assert_equal(mrec.a, MA.array(d,mask=m))
        assert_equal(mrec.b, MA.array(d[::-1],mask=m[::-1]))
        assert((mrec._fieldmask == N.core.records.fromarrays([m, m[::-1]])).all())
        assert_equal(mrec._mask, N.r_[[m,m[::-1]]].all(0))
        assert_equal(mrec.a[1], mrec[1].a)

    if 1:
        x = [(1.,10.,'a'),(2.,20,'b'),(3.14,30,'c'),(5.55,40,'d')]
        desc = [('ffloat', N.float_), ('fint', N.int_), ('fstr', 'S10')] 
        mr = MaskedRecords(x,dtype=desc)
        mr[0] = masked
        mr.ffloat[-1] = masked
        #
        mrlast = mr[-1]
        assert(isinstance(mrlast,MaskedRecords))
        assert(hasattr(mrlast,'ffloat'))
        assert_equal(mrlast.ffloat, masked)