1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
|
"""
Generic statistics functions, with support to MA.
:author: Pierre GF Gerard-Marchant
:contact: pierregm_at_uga_edu
:date: $Date: 2007-07-09 08:38:26 -0700 (Mon, 09 Jul 2007) $
:version: $Id: mstats.py 3153 2007-07-09 15:38:26Z pierregm $
"""
__author__ = "Pierre GF Gerard-Marchant ($Author: pierregm $)"
__version__ = '1.0'
__revision__ = "$Revision: 3153 $"
__date__ = '$Date: 2007-07-09 08:38:26 -0700 (Mon, 09 Jul 2007) $'
import numpy
from numpy import bool_, float_, int_, \
sqrt
from numpy import array as narray
import numpy.core.numeric as numeric
from numpy.core.numeric import concatenate
import maskedarray as MA
from maskedarray.core import masked, nomask, MaskedArray, masked_array
from maskedarray.extras import apply_along_axis, dot
__all__ = ['cov','meppf','plotting_positions','meppf','mmedian','mquantiles',
'stde_median','trim_tail','trim_both','trimmed_mean','trimmed_stde',
'winsorize']
#####--------------------------------------------------------------------------
#---- -- Trimming ---
#####--------------------------------------------------------------------------
def winsorize(data, alpha=0.2):
"""Returns a Winsorized version of the input array: the (alpha/2.) lowest
values are set to the (alpha/2.)th percentile, and the (alpha/2.) highest
values are set to the (1-alpha/2.)th percentile
Masked values are skipped. The input array is first flattened.
"""
data = masked_array(data, copy=False).ravel()
idxsort = data.argsort()
(nsize, ncounts) = (data.size, data.count())
ntrim = int(alpha * ncounts)
(xmin,xmax) = data[idxsort[[ntrim, ncounts-nsize-ntrim-1]]]
return masked_array(numpy.clip(data, xmin, xmax), mask=data._mask)
#..............................................................................
def trim_both(data, proportiontocut=0.2, axis=None):
"""Trims the data by masking the int(trim*n) smallest and int(trim*n) largest
values of data along the given axis, where n is the number of unmasked values.
:Inputs:
data : MaskedArray
Data to trim.
trim : float *[0.2]*
Percentage of trimming. If n is the number of unmasked values before trimming,
the number of values after trimming is (1-2*trim)*n.
axis : integer *[None]*
Axis along which to perform the trimming.
"""
#...................
def _trim_1D(data, trim):
"Private function: return a trimmed 1D array."
nsize = data.size
ncounts = data.count()
ntrim = int(trim * ncounts)
idxsort = data.argsort()
data[idxsort[:ntrim]] = masked
data[idxsort[ncounts-nsize-ntrim:]] = masked
return data
#...................
data = masked_array(data, copy=False, subok=True)
data.unshare_mask()
if (axis is None):
return _trim_1D(data.ravel(), proportiontocut)
else:
assert data.ndim <= 2, "Array should be 2D at most !"
return apply_along_axis(_trim_1D, axis, data, proportiontocut)
#..............................................................................
def trim_tail(data, proportiontocut=0.2, tail='left', axis=None):
"""Trims the data by masking int(trim*n) values from ONE tail of the data
along the given axis, where n is the number of unmasked values.
:Inputs:
data : MaskedArray
Data to trim.
trim : float *[0.2]*
Percentage of trimming. If n is the number of unmasked values before trimming,
the number of values after trimming is (1-2*trim)*n.
axis : integer *[None]*
Axis along which to perform the trimming.
"""
#...................
def _trim_1D(data, trim, left):
"Private function: return a trimmed 1D array."
nsize = data.size
ncounts = data.count()
ntrim = int(trim * ncounts)
idxsort = data.argsort()
if left:
data[idxsort[:ntrim]] = masked
else:
data[idxsort[ncounts-nsize-ntrim:]] = masked
return data
#...................
data = masked_array(data, copy=False, subok=True)
data.unshare_mask()
#
if not isinstance(tail, str):
raise TypeError("The tail argument should be in ('left','right')")
tail = tail.lower()[0]
if tail == 'l':
left = True
elif tail == 'r':
left=False
else:
raise ValueError("The tail argument should be in ('left','right')")
#
if (axis is None):
return _trim_1D(data.ravel(), proportiontocut, left)
else:
assert data.ndim <= 2, "Array should be 2D at most !"
return apply_along_axis(_trim_1D, axis, data, proportiontocut, left)
#..............................................................................
def trimmed_mean(data, proportiontocut=0.2, axis=None):
"""Returns the trimmed mean of the data along the given axis. Trimming is
performed on both ends of the distribution.
:Inputs:
data : MaskedArray
Data to trim.
proportiontocut : float *[0.2]*
Proportion of the data to cut from each side of the data .
As a result, (2*proportiontocut*n) values are actually trimmed.
axis : integer *[None]*
Axis along which to perform the trimming.
"""
return trim_both(data, proportiontocut=proportiontocut, axis=axis).mean(axis=axis)
#..............................................................................
def trimmed_stde(data, proportiontocut=0.2, axis=None):
"""Returns the standard error of the trimmed mean for the input data,
along the given axis. Trimming is performed on both ends of the distribution.
:Inputs:
data : MaskedArray
Data to trim.
proportiontocut : float *[0.2]*
Proportion of the data to cut from each side of the data .
As a result, (2*proportiontocut*n) values are actually trimmed.
axis : integer *[None]*
Axis along which to perform the trimming.
"""
#........................
def _trimmed_stde_1D(data, trim=0.2):
"Returns the standard error of the trimmed mean for a 1D input data."
winsorized = winsorize(data)
nsize = winsorized.count()
winstd = winsorized.stdu()
return winstd / ((1-2*trim) * numpy.sqrt(nsize))
#........................
data = masked_array(data, copy=False, subok=True)
data.unshare_mask()
if (axis is None):
return _trimmed_stde_1D(data.ravel(), proportiontocut)
else:
assert data.ndim <= 2, "Array should be 2D at most !"
return apply_along_axis(_trimmed_stde_1D, axis, data, proportiontocut)
#.............................................................................
def stde_median(data, axis=None):
"""Returns the McKean-Schrader estimate of the standard error of the sample
median along the given axis.
"""
def _stdemed_1D(data):
sorted = numpy.sort(data.compressed())
n = len(sorted)
z = 2.5758293035489004
k = int(round((n+1)/2. - z * sqrt(n/4.),0))
return ((sorted[n-k] - sorted[k-1])/(2.*z))
#
data = masked_array(data, copy=False, subok=True)
if (axis is None):
return _stdemed_1D(data)
else:
assert data.ndim <= 2, "Array should be 2D at most !"
return apply_along_axis(_stdemed_1D, axis, data)
#####--------------------------------------------------------------------------
#---- --- Quantiles ---
#####--------------------------------------------------------------------------
def mquantiles(data, prob=list([.25,.5,.75]), alphap=.4, betap=.4, axis=None):
"""Computes empirical quantiles for a *1xN* data array.
Samples quantile are defined by:
*Q(p) = (1-g).x[i] +g.x[i+1]*
where *x[j]* is the jth order statistic,
with *i = (floor(n*p+m))*, *m=alpha+p*(1-alpha-beta)* and *g = n*p + m - i)*.
Typical values of (alpha,beta) are:
- (0,1) : *p(k) = k/n* : linear interpolation of cdf (R, type 4)
- (.5,.5) : *p(k) = (k+1/2.)/n* : piecewise linear function (R, type 5)
- (0,0) : *p(k) = k/(n+1)* : (R type 6)
- (1,1) : *p(k) = (k-1)/(n-1)*. In this case, p(k) = mode[F(x[k])].
That's R default (R type 7)
- (1/3,1/3): *p(k) = (k-1/3)/(n+1/3)*. Then p(k) ~ median[F(x[k])].
The resulting quantile estimates are approximately median-unbiased
regardless of the distribution of x. (R type 8)
- (3/8,3/8): *p(k) = (k-3/8)/(n+1/4)*. Blom.
The resulting quantile estimates are approximately unbiased
if x is normally distributed (R type 9)
- (.4,.4) : approximately quantile unbiased (Cunnane)
- (.35,.35): APL, used with PWM
:Parameters:
x : Sequence
Input data, as a sequence or array of dimension at most 2.
prob : Sequence *[(0.25, 0.5, 0.75)]*
List of quantiles to compute.
alpha : Float (*[0.4]*)
Plotting positions parameter.
beta : Float (*[0.4]*)
Plotting positions parameter.
axis : Integer *[None]*
Axis along which to compute quantiles. If *None*, uses the whole
(flattened/compressed) dataset.
"""
def _quantiles1D(data,m,p):
x = numpy.sort(data.compressed())
n = len(x)
if n == 0:
return masked_array(numpy.empty(len(p), dtype=float_), mask=True)
elif n == 1:
return masked_array(numpy.resize(x, p.shape), mask=nomask)
aleph = (n*p + m)
k = numpy.floor(aleph.clip(1, n-1)).astype(int_)
gamma = (aleph-k).clip(0,1)
return (1.-gamma)*x[(k-1).tolist()] + gamma*x[k.tolist()]
# Initialization & checks ---------
data = masked_array(data, copy=False)
p = narray(prob, copy=False, ndmin=1)
m = alphap + p*(1.-alphap-betap)
# Computes quantiles along axis (or globally)
if (axis is None):
return _quantiles1D(data, m, p)
else:
assert data.ndim <= 2, "Array should be 2D at most !"
return apply_along_axis(_quantiles1D, axis, data, m, p)
def plotting_positions(data, alpha=0.4, beta=0.4):
"""Returns the plotting positions (or empirical percentile points) for the
data.
Plotting positions are defined as (i-alpha)/(n-alpha-beta), where:
- i is the rank order statistics
- n is the number of unmasked values along the given axis
- alpha and beta are two parameters.
Typical values for alpha and beta are:
- (0,1) : *p(k) = k/n* : linear interpolation of cdf (R, type 4)
- (.5,.5) : *p(k) = (k-1/2.)/n* : piecewise linear function (R, type 5)
- (0,0) : *p(k) = k/(n+1)* : Weibull (R type 6)
- (1,1) : *p(k) = (k-1)/(n-1)*. In this case, p(k) = mode[F(x[k])].
That's R default (R type 7)
- (1/3,1/3): *p(k) = (k-1/3)/(n+1/3)*. Then p(k) ~ median[F(x[k])].
The resulting quantile estimates are approximately median-unbiased
regardless of the distribution of x. (R type 8)
- (3/8,3/8): *p(k) = (k-3/8)/(n+1/4)*. Blom.
The resulting quantile estimates are approximately unbiased
if x is normally distributed (R type 9)
- (.4,.4) : approximately quantile unbiased (Cunnane)
- (.35,.35): APL, used with PWM
"""
data = masked_array(data, copy=False).reshape(1,-1)
n = data.count()
plpos = numpy.empty(data.size, dtype=float_)
plpos[n:] = 0
plpos[data.argsort()[:n]] = (numpy.arange(1,n+1) - alpha)/(n+1-alpha-beta)
return masked_array(plpos, mask=data._mask)
meppf = plotting_positions
def mmedian(data, axis=None):
"""Returns the median of data along the given axis. Missing data are discarded."""
def _median1D(data):
x = numpy.sort(data.compressed())
if x.size == 0:
return masked
return numpy.median(x)
data = masked_array(data, subok=True, copy=True)
if axis is None:
return _median1D(data)
else:
return apply_along_axis(_median1D, axis, data)
def cov(x, y=None, rowvar=True, bias=False, strict=False):
"""
Estimate the covariance matrix.
If x is a vector, return the variance. For matrices, returns the covariance
matrix.
If y is given, it is treated as an additional (set of) variable(s).
Normalization is by (N-1) where N is the number of observations (unbiased
estimate). If bias is True then normalization is by N.
If rowvar is non-zero (default), then each row is a variable with observations
in the columns, otherwise each column is a variable and the observations are
in the rows.
If strict is True, masked values are propagated: if a masked value appears in
a row or column, the whole row or column is considered masked.
"""
X = narray(x, ndmin=2, subok=True, dtype=float)
if X.shape[0] == 1:
rowvar = True
if rowvar:
axis = 0
tup = (slice(None),None)
else:
axis = 1
tup = (None, slice(None))
#
if y is not None:
y = narray(y, copy=False, ndmin=2, subok=True, dtype=float)
X = concatenate((X,y),axis)
#
X -= X.mean(axis=1-axis)[tup]
n = X.count(1-axis)
#
if bias:
fact = n*1.0
else:
fact = n-1.0
#
if not rowvar:
return (dot(X.T, X.conj(), strict=False) / fact).squeeze()
else:
return (dot(X, X.T.conj(), strict=False) / fact).squeeze()
def idealfourths(data, axis=None):
"""Returns an estimate of the interquartile range of the data along the given
axis, as computed with the ideal fourths.
"""
def _idf(data):
x = numpy.sort(data.compressed())
n = len(x)
(j,h) = divmod(n/4. + 5/12.,1)
qlo = (1-h)*x[j] + h*x[j+1]
k = n - j
qup = (1-h)*x[k] + h*x[k-1]
return qup - qlo
data = masked_array(data, copy=False)
if (axis is None):
return _idf(data)
else:
return apply_along_axis(_idf, axis, data)
def rsh(data, points=None):
"""Evalutates Rosenblatt's shifted histogram estimators for each
point of 'points' on the dataset 'data'.
:Inputs:
data : sequence
Input data. Masked values are discarded.
points :
Sequence of points where to evaluate Rosenblatt shifted histogram.
If None, use the data.
"""
data = masked_array(data, copy=False)
if points is None:
points = data
else:
points = numpy.array(points, copy=False, ndmin=1)
if data.ndim != 1:
raise AttributeError("The input array should be 1D only !")
n = data.count()
h = 1.2 * idealfourths(data) / n**(1./5)
nhi = (data[:,None] <= points[None,:] + h).sum(0)
nlo = (data[:,None] < points[None,:] - h).sum(0)
return (nhi-nlo) / (2.*n*h)
|