1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
# pylint: disable-msg=W0611, W0612, W0511,R0201
"""Tests suite for maskedArray statistics.
:author: Pierre Gerard-Marchant
:contact: pierregm_at_uga_dot_edu
:version: $Id: test_mstats.py 3153 2007-07-09 15:38:26Z pierregm $
"""
__author__ = "Pierre GF Gerard-Marchant ($Author: pierregm $)"
__version__ = '1.0'
__revision__ = "$Revision: 3153 $"
__date__ = '$Date: 2007-07-09 08:38:26 -0700 (Mon, 09 Jul 2007) $'
import numpy
import maskedarray
from maskedarray import masked, masked_array
import maskedarray.testutils
from maskedarray.testutils import *
from maskedarray.mstats import *
#..............................................................................
class test_quantiles(NumpyTestCase):
"Base test class for MaskedArrays."
def __init__(self, *args, **kwds):
NumpyTestCase.__init__(self, *args, **kwds)
self.a = maskedarray.arange(1,101)
#
def test_1d_nomask(self):
"Test quantiles 1D - w/o mask."
a = self.a
assert_almost_equal(mquantiles(a, alphap=1., betap=1.),
[25.75, 50.5, 75.25])
assert_almost_equal(mquantiles(a, alphap=0, betap=1.),
[25., 50., 75.])
assert_almost_equal(mquantiles(a, alphap=0.5, betap=0.5),
[25.5, 50.5, 75.5])
assert_almost_equal(mquantiles(a, alphap=0., betap=0.),
[25.25, 50.5, 75.75])
assert_almost_equal(mquantiles(a, alphap=1./3, betap=1./3),
[25.41666667, 50.5, 75.5833333])
assert_almost_equal(mquantiles(a, alphap=3./8, betap=3./8),
[25.4375, 50.5, 75.5625])
assert_almost_equal(mquantiles(a), [25.45, 50.5, 75.55])#
#
def test_1d_mask(self):
"Test quantiles 1D - w/ mask."
a = self.a
a[1::2] = masked
assert_almost_equal(mquantiles(a, alphap=1., betap=1.),
[25.5, 50.0, 74.5])
assert_almost_equal(mquantiles(a, alphap=0, betap=1.),
[24., 49., 74.])
assert_almost_equal(mquantiles(a, alphap=0.5, betap=0.5),
[25., 50., 75.])
assert_almost_equal(mquantiles(a, alphap=0., betap=0.),
[24.5, 50.0, 75.5])
assert_almost_equal(mquantiles(a, alphap=1./3, betap=1./3),
[24.833333, 50.0, 75.166666])
assert_almost_equal(mquantiles(a, alphap=3./8, betap=3./8),
[24.875, 50., 75.125])
assert_almost_equal(mquantiles(a), [24.9, 50., 75.1])
#
def test_2d_nomask(self):
"Test quantiles 2D - w/o mask."
a = self.a
b = maskedarray.resize(a, (100,100))
assert_almost_equal(mquantiles(b), [25.45, 50.5, 75.55])
assert_almost_equal(mquantiles(b, axis=0), maskedarray.resize(a,(3,100)))
assert_almost_equal(mquantiles(b, axis=1),
maskedarray.resize([25.45, 50.5, 75.55], (100,3)))
#
def test_2d_mask(self):
"Test quantiles 2D - w/ mask."
a = self.a
a[1::2] = masked
b = maskedarray.resize(a, (100,100))
assert_almost_equal(mquantiles(b), [25., 50., 75.])
assert_almost_equal(mquantiles(b, axis=0), maskedarray.resize(a,(3,100)))
assert_almost_equal(mquantiles(b, axis=1),
maskedarray.resize([24.9, 50., 75.1], (100,3)))
class test_median(NumpyTestCase):
def __init__(self, *args, **kwds):
NumpyTestCase.__init__(self, *args, **kwds)
def test_2d(self):
"Tests median w/ 2D"
(n,p) = (101,30)
x = masked_array(numpy.linspace(-1.,1.,n),)
x[:10] = x[-10:] = masked
z = masked_array(numpy.empty((n,p), dtype=numpy.float_))
z[:,0] = x[:]
idx = numpy.arange(len(x))
for i in range(1,p):
numpy.random.shuffle(idx)
z[:,i] = x[idx]
assert_equal(mmedian(z[:,0]), 0)
assert_equal(mmedian(z), numpy.zeros((p,)))
def test_3d(self):
"Tests median w/ 3D"
x = maskedarray.arange(24).reshape(3,4,2)
x[x%3==0] = masked
assert_equal(mmedian(x,0), [[12,9],[6,15],[12,9],[18,15]])
x.shape = (4,3,2)
assert_equal(mmedian(x,0),[[99,10],[11,99],[13,14]])
x = maskedarray.arange(24).reshape(4,3,2)
x[x%5==0] = masked
assert_equal(mmedian(x,0), [[12,10],[8,9],[16,17]])
#..............................................................................
class test_trimming(NumpyTestCase):
#
def __init__(self, *args, **kwds):
NumpyTestCase.__init__(self, *args, **kwds)
#
def test_trim(self):
"Tests trimming."
x = maskedarray.arange(100)
assert_equal(trim_both(x).count(), 60)
assert_equal(trim_tail(x,tail='r').count(), 80)
x[50:70] = masked
trimx = trim_both(x)
assert_equal(trimx.count(), 48)
assert_equal(trimx._mask, [1]*16 + [0]*34 + [1]*20 + [0]*14 + [1]*16)
x._mask = nomask
x.shape = (10,10)
assert_equal(trim_both(x).count(), 60)
assert_equal(trim_tail(x).count(), 80)
#
def test_trimmedmean(self):
"Tests the trimmed mean."
data = masked_array([ 77, 87, 88,114,151,210,219,246,253,262,
296,299,306,376,428,515,666,1310,2611])
assert_almost_equal(trimmed_mean(data,0.1), 343, 0)
assert_almost_equal(trimmed_mean(data,0.2), 283, 0)
#
def test_trimmed_stde(self):
"Tests the trimmed mean standard error."
data = masked_array([ 77, 87, 88,114,151,210,219,246,253,262,
296,299,306,376,428,515,666,1310,2611])
assert_almost_equal(trimmed_stde(data,0.2), 56.1, 1)
#
def test_winsorization(self):
"Tests the Winsorization of the data."
data = masked_array([ 77, 87, 88,114,151,210,219,246,253,262,
296,299,306,376,428,515,666,1310,2611])
assert_almost_equal(winsorize(data).varu(), 21551.4, 1)
data[5] = masked
winsorized = winsorize(data)
assert_equal(winsorized.mask, data.mask)
#..............................................................................
class test_misc(NumpyTestCase):
def __init__(self, *args, **kwds):
NumpyTestCase.__init__(self, *args, **kwds)
def check_cov(self):
"Tests the cov function."
x = masked_array([[1,2,3],[4,5,6]], mask=[[1,0,0],[0,0,0]])
c = cov(x[0])
assert_equal(c, (x[0].anom()**2).sum())
c = cov(x[1])
assert_equal(c, (x[1].anom()**2).sum()/2.)
c = cov(x)
assert_equal(c[1,0], (x[0].anom()*x[1].anom()).sum())
###############################################################################
#------------------------------------------------------------------------------
if __name__ == "__main__":
NumpyTest().run()
|