1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
# pylint: disable-msg=W0611, W0612, W0511,R0201
"""Tests suite for MaskedArray & subclassing.
:author: Pierre Gerard-Marchant
:contact: pierregm_at_uga_dot_edu
:version: $Id: test_subclassing.py 2986 2007-05-12 02:04:48Z pierregm $
"""
__author__ = "Pierre GF Gerard-Marchant ($Author: pierregm $)"
__version__ = '1.0'
__revision__ = "$Revision: 2986 $"
__date__ = '$Date: 2007-05-11 19:04:48 -0700 (Fri, 11 May 2007) $'
import numpy as N
import numpy.core.numeric as numeric
from numpy.testing import NumpyTest, NumpyTestCase
import maskedarray.testutils
from maskedarray.testutils import *
import maskedarray.core as coremodule
from maskedarray.core import *
class SubArray(N.ndarray):
"""Defines a generic N.ndarray subclass, that stores some metadata
in the dictionary `info`."""
def __new__(cls,arr,info={}):
x = N.asanyarray(arr).view(cls)
x.info = info
return x
def __array_finalize__(self, obj):
self.info = getattr(obj,'info',{})
return
def __add__(self, other):
result = N.ndarray.__add__(self, other)
result.info.update({'added':result.info.pop('added',0)+1})
return result
subarray = SubArray
class MSubArray(SubArray,MaskedArray):
def __new__(cls, data, info=None, mask=nomask):
subarr = SubArray(data, info)
_data = MaskedArray.__new__(cls, data=subarr, mask=mask)
_data.info = subarr.info
return _data
def __array_finalize__(self,obj):
SubArray.__array_finalize__(self, obj)
MaskedArray.__array_finalize__(self,obj)
return
def _get_series(self):
return self.view(MaskedArray)
_series = property(fget=_get_series)
msubarray = MSubArray
class MMatrix(MaskedArray, N.matrix,):
def __new__(cls, data, mask=nomask):
mat = N.matrix(data)
_data = MaskedArray.__new__(cls, data=mat, mask=mask)
return _data
def __array_finalize__(self,obj):
N.matrix.__array_finalize__(self, obj)
MaskedArray.__array_finalize__(self,obj)
return
def _get_series(self):
return self.view(MaskedArray)
_series = property(fget=_get_series)
mmatrix = MMatrix
class test_subclassing(NumpyTestCase):
"""Test suite for masked subclasses of ndarray."""
def check_data_subclassing(self):
"Tests whether the subclass is kept."
x = N.arange(5)
m = [0,0,1,0,0]
xsub = SubArray(x)
xmsub = masked_array(xsub, mask=m)
assert isinstance(xmsub, MaskedArray)
assert_equal(xmsub._data, xsub)
assert isinstance(xmsub._data, SubArray)
def check_maskedarray_subclassing(self):
"Tests subclassing MaskedArray"
x = N.arange(5)
mx = mmatrix(x,mask=[0,1,0,0,0])
assert isinstance(mx._data, N.matrix)
"Tests masked_unary_operation"
assert isinstance(add(mx,mx), mmatrix)
assert isinstance(add(mx,x), mmatrix)
assert_equal(add(mx,x), mx+x)
assert isinstance(add(mx,mx)._data, N.matrix)
assert isinstance(add.outer(mx,mx), mmatrix)
"Tests masked_binary_operation"
assert isinstance(hypot(mx,mx), mmatrix)
assert isinstance(hypot(mx,x), mmatrix)
def check_attributepropagation(self):
x = array(arange(5), mask=[0]+[1]*4)
my = masked_array(subarray(x))
ym = msubarray(x)
#
z = (my+1)
assert isinstance(z,MaskedArray)
assert not isinstance(z, MSubArray)
assert isinstance(z._data, SubArray)
assert_equal(z._data.info, {})
#
z = (ym+1)
assert isinstance(z, MaskedArray)
assert isinstance(z, MSubArray)
assert isinstance(z._data, SubArray)
assert z._data.info['added'] > 0
#
ym._set_mask([1,0,0,0,1])
assert_equal(ym._mask, [1,0,0,0,1])
ym._series._set_mask([0,0,0,0,1])
assert_equal(ym._mask, [0,0,0,0,1])
#
xsub = subarray(x, info={'name':'x'})
mxsub = masked_array(xsub)
assert hasattr(mxsub, 'info')
assert_equal(mxsub.info, xsub.info)
def check_subclasspreservation(self):
"Checks that masked_array(...,subok=True) preserves the class."
x = N.arange(5)
m = [0,0,1,0,0]
xinfo = [(i,j) for (i,j) in zip(x,m)]
xsub = MSubArray(x, mask=m, info={'xsub':xinfo})
#
mxsub = masked_array(xsub, subok=False)
assert not isinstance(mxsub, MSubArray)
assert isinstance(mxsub, MaskedArray)
assert_equal(mxsub._mask, m)
#
mxsub = masked_array(xsub, subok=True)
assert isinstance(mxsub, MSubArray)
assert_equal(mxsub.info, xsub.info)
assert_equal(mxsub._mask, xsub._mask)
################################################################################
if __name__ == '__main__':
NumpyTest().run()
|