File: test_subclassing.py

package info (click to toggle)
python-scipy 0.6.0-12
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 32,016 kB
  • ctags: 46,675
  • sloc: cpp: 124,854; ansic: 110,614; python: 108,664; fortran: 76,260; objc: 424; makefile: 384; sh: 10
file content (151 lines) | stat: -rw-r--r-- 4,999 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# pylint: disable-msg=W0611, W0612, W0511,R0201
"""Tests suite for MaskedArray & subclassing.

:author: Pierre Gerard-Marchant
:contact: pierregm_at_uga_dot_edu
:version: $Id: test_subclassing.py 2986 2007-05-12 02:04:48Z pierregm $
"""
__author__ = "Pierre GF Gerard-Marchant ($Author: pierregm $)"
__version__ = '1.0'
__revision__ = "$Revision: 2986 $"
__date__     = '$Date: 2007-05-11 19:04:48 -0700 (Fri, 11 May 2007) $'

import numpy as N
import numpy.core.numeric as numeric

from numpy.testing import NumpyTest, NumpyTestCase

import maskedarray.testutils
from maskedarray.testutils import *

import maskedarray.core as coremodule
from maskedarray.core import *


class SubArray(N.ndarray):
    """Defines a generic N.ndarray subclass, that stores some metadata
    in the  dictionary `info`."""
    def __new__(cls,arr,info={}):
        x = N.asanyarray(arr).view(cls)
        x.info = info
        return x
    def __array_finalize__(self, obj):
        self.info = getattr(obj,'info',{})
        return
    def __add__(self, other):
        result = N.ndarray.__add__(self, other)
        result.info.update({'added':result.info.pop('added',0)+1})
        return result
subarray = SubArray

class MSubArray(SubArray,MaskedArray):
    def __new__(cls, data, info=None, mask=nomask):
        subarr = SubArray(data, info)
        _data = MaskedArray.__new__(cls, data=subarr, mask=mask)
        _data.info = subarr.info
        return _data
    def __array_finalize__(self,obj):
        SubArray.__array_finalize__(self, obj)
        MaskedArray.__array_finalize__(self,obj)    
        return
    def _get_series(self):
        return self.view(MaskedArray)
    _series = property(fget=_get_series)
msubarray = MSubArray

class MMatrix(MaskedArray, N.matrix,):
    def __new__(cls, data, mask=nomask):
        mat = N.matrix(data)
        _data = MaskedArray.__new__(cls, data=mat, mask=mask)
        return _data
    def __array_finalize__(self,obj):
        N.matrix.__array_finalize__(self, obj)
        MaskedArray.__array_finalize__(self,obj)
        return     
    def _get_series(self):
        return self.view(MaskedArray)
    _series = property(fget=_get_series)
mmatrix = MMatrix 
        


class test_subclassing(NumpyTestCase):
    """Test suite for masked subclasses of ndarray."""
                
    def check_data_subclassing(self):
        "Tests whether the subclass is kept."
        x = N.arange(5)
        m = [0,0,1,0,0]
        xsub = SubArray(x)
        xmsub = masked_array(xsub, mask=m)
        assert isinstance(xmsub, MaskedArray)
        assert_equal(xmsub._data, xsub)
        assert isinstance(xmsub._data, SubArray)
        
    def check_maskedarray_subclassing(self):
        "Tests subclassing MaskedArray"
        x = N.arange(5)
        mx = mmatrix(x,mask=[0,1,0,0,0])
        assert isinstance(mx._data, N.matrix)
        "Tests masked_unary_operation"
        assert isinstance(add(mx,mx), mmatrix)
        assert isinstance(add(mx,x), mmatrix)
        assert_equal(add(mx,x), mx+x)
        assert isinstance(add(mx,mx)._data, N.matrix)
        assert isinstance(add.outer(mx,mx), mmatrix)
        "Tests masked_binary_operation"
        assert isinstance(hypot(mx,mx), mmatrix)
        assert isinstance(hypot(mx,x), mmatrix)

    def check_attributepropagation(self):
        x = array(arange(5), mask=[0]+[1]*4)
        my = masked_array(subarray(x))
        ym = msubarray(x)
        #
        z = (my+1)
        assert isinstance(z,MaskedArray)
        assert not isinstance(z, MSubArray)
        assert isinstance(z._data, SubArray)
        assert_equal(z._data.info, {})
        #
        z = (ym+1)
        assert isinstance(z, MaskedArray)
        assert isinstance(z, MSubArray)
        assert isinstance(z._data, SubArray)
        assert z._data.info['added'] > 0
        #
        ym._set_mask([1,0,0,0,1])
        assert_equal(ym._mask, [1,0,0,0,1])
        ym._series._set_mask([0,0,0,0,1])
        assert_equal(ym._mask, [0,0,0,0,1])
        #
        xsub = subarray(x, info={'name':'x'})
        mxsub = masked_array(xsub)
        assert hasattr(mxsub, 'info')
        assert_equal(mxsub.info, xsub.info)
    
    def check_subclasspreservation(self):
        "Checks that masked_array(...,subok=True) preserves the class."
        x = N.arange(5)
        m = [0,0,1,0,0]
        xinfo = [(i,j) for (i,j) in zip(x,m)]
        xsub = MSubArray(x, mask=m, info={'xsub':xinfo})
        #
        mxsub = masked_array(xsub, subok=False)
        assert not isinstance(mxsub, MSubArray)
        assert isinstance(mxsub, MaskedArray)
        assert_equal(mxsub._mask, m)
        #
        mxsub = masked_array(xsub, subok=True)
        assert isinstance(mxsub, MSubArray)
        assert_equal(mxsub.info, xsub.info)
        assert_equal(mxsub._mask, xsub._mask)
        
        
################################################################################
if __name__ == '__main__':
    NumpyTest().run()