1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
import shutil
import tempfile
import numpy as N
from scipy.sandbox.models import survival, model
class discrete:
"""
A simple little class for working with discrete random vectors.
"""
def __init__(self, x, w=None):
self.x = N.squeeze(x)
if self.x.shape == ():
self.x = N.array([self.x])
self.n = self.x.shape[0]
if w is None:
w = N.ones(self.n, N.float64)
else:
if w.shape[0] != self.n:
raise ValueError, 'incompatible shape for weights w'
if N.any(N.less(w, 0)):
raise ValueError, 'weights should be non-negative'
self.w = w / w.sum()
def mean(self, f=None):
if f is None:
fx = self.x
else:
fx = f(self.x)
return (fx * self.w).sum()
def cov(self):
mu = self.mean()
dx = self.x - N.multiply.outer(mu, self.x.shape[1])
return N.dot(dx, N.transpose(dx))
class observation(survival.right_censored):
def __getitem__(self, item):
if self.namespace is not None:
return self.namespace[item]
else:
return getattr(self, item)
def __init__(self, time, delta, namespace=None):
self.namespace = namespace
survival.right_censored.__init__(self, time, delta)
def __call__(self, formula, time=None, **extra):
return formula(namespace=self, time=time, **extra)
class coxph(model.likelihood_model):
def __init__(self, subjects, formula, time_dependent=False):
self.subjects, self.formula = subjects, formula
self.time_dependent = time_dependent
self.initialize(self.subjects)
def initialize(self, subjects):
self.failures = {}
for i in range(len(subjects)):
s = subjects[i]
if s.delta:
if not self.failures.has_key(s.time):
self.failures[s.time] = [i]
else:
self.failures[s.time].append(i)
self.failure_times = self.failures.keys()
self.failure_times.sort()
def cache(self):
if self.time_dependent:
self.cachedir = tempfile.mkdtemp()
self.design = {}
self.risk = {}
first = True
for t in self.failures.keys():
if self.time_dependent:
d = N.array([s(self.formula, time=t)
for s in self.subjects]).astype('<f8')
dshape = d.shape
dfile = file(tempfile.mkstemp(dir=self.cachedir)[1], 'w')
d.tofile(dfile)
dfile.close()
del(d)
self.design[t] = N.memmap(dfile.name,
dtype=N.dtype('<f8'),
shape=dshape)
elif first:
d = N.array([s(self.formula, time=t)
for s in self.subjects]).astype(N.float64)
self.design[t] = d
else:
self.design[t] = d
self.risk[t] = N.compress([s.atrisk(t) for s in self.subjects],
N.arange(self.design[t].shape[0]),axis=-1)
def __del__(self):
shutil.rmtree(self.cachedir, ignore_errors=True)
def logL(self, b, ties='breslow'):
logL = 0
for t in self.failures.keys():
fail = self.failures[t]
d = len(fail)
risk = self.risk[t]
Zb = N.dot(self.design[t], b)
logL += Zb[fail].sum()
if ties == 'breslow':
s = N.exp(Zb[risk]).sum()
logL -= N.log(N.exp(Zb[risk]).sum()) * d
elif ties == 'efron':
s = N.exp(Zb[risk]).sum()
r = N.exp(Zb[fail]).sum()
for j in range(d):
logL -= N.log(s - j * r / d)
elif ties == 'cox':
raise NotImplementedError, 'Cox tie breaking method not implemented'
else:
raise NotImplementedError, 'tie breaking method not recognized'
return logL
def score(self, b, ties='breslow'):
score = 0
for t in self.failures.keys():
fail = self.failures[t]
d = len(fail)
risk = self.risk[t]
Z = self.design[t]
score += Z[fail].sum()
if ties == 'breslow':
w = N.exp(N.dot(Z, b))
rv = discrete(Z[risk], w=w[risk])
score -= rv.mean() * d
elif ties == 'efron':
w = N.exp(N.dot(Z, b))
score += Z[fail].sum()
for j in range(d):
efron_w = w
efron_w[fail] -= i * w[fail] / d
rv = discrete(Z[risk], w=efron_w[risk])
score -= rv.mean()
elif ties == 'cox':
raise NotImplementedError, 'Cox tie breaking method not implemented'
else:
raise NotImplementedError, 'tie breaking method not recognized'
return N.array([score])
def information(self, b, ties='breslow'):
info = 0
score = 0
for t in self.failures.keys():
fail = self.failures[t]
d = len(fail)
risk = self.risk[t]
Z = self.design[t]
if ties == 'breslow':
w = N.exp(N.dot(Z, b))
rv = discrete(Z[risk], w=w[risk])
info += rv.cov()
elif ties == 'efron':
w = N.exp(N.dot(Z, b))
score += Z[fail].sum()
for j in range(d):
efron_w = w
efron_w[fail] -= i * w[fail] / d
rv = discrete(Z[risk], w=efron_w[risk])
info += rv.cov()
elif ties == 'cox':
raise NotImplementedError, 'Cox tie breaking method not implemented'
else:
raise NotImplementedError, 'tie breaking method not recognized'
return score
if __name__ == '__main__':
import numpy.random as R
n = 100
X = N.array([0]*n + [1]*n)
b = 0.4
lin = 1 + b*X
Y = R.standard_exponential((2*n,)) / lin
delta = R.binomial(1, 0.9, size=(2*n,))
subjects = [observation(Y[i], delta[i]) for i in range(2*n)]
for i in range(2*n):
subjects[i].X = X[i]
import scipy.sandbox.models.formula as F
x = F.quantitative('X')
f = F.formula(x)
c = coxph(subjects, f)
c.cache()
# c.newton([0.4])
|