File: regression.py

package info (click to toggle)
python-scipy 0.6.0-12
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 32,016 kB
  • ctags: 46,675
  • sloc: cpp: 124,854; ansic: 110,614; python: 108,664; fortran: 76,260; objc: 424; makefile: 384; sh: 10
file content (377 lines) | stat: -rw-r--r-- 11,975 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
"""
This module implements some standard regression models: OLS and WLS
models, as well as an AR(p) regression model.

Models are specified with a design matrix and are fit using their 
'fit' method. 

Subclasses that have more complicated covariance matrices
should write over the 'whiten' method as the fit method
prewhitens the response by calling 'whiten'.

General reference for regression models:

'Introduction to Linear Regression Analysis', Douglas C. Montgomery,
    Elizabeth A. Peck, G. Geoffrey Vining. Wiley, 2006.

"""

__docformat__ = 'restructuredtext en'

import numpy as N
import numpy.linalg as L
from scipy.linalg import norm, toeplitz

from scipy.sandbox.models.model import likelihood_model, \
     likelihood_model_results
from scipy.sandbox.models import utils

class ols_model(likelihood_model):
    """
    A simple ordinary least squares model.

    Examples
    --------
    >>> import numpy as N
    >>> 
    >>> from scipy.sandbox.models.formula import term, I
    >>> from scipy.sandbox.models.regression import ols_model
    >>> 
    >>> data={'Y':[1,3,4,5,2,3,4],
    ...       'X':range(1,8)}
    >>> f = term("X") + I
    >>> f.namespace = data
    >>> 
    >>> model = ols_model(f.design())
    >>> results = model.fit(data['Y'])
    >>> 
    >>> results.beta
    array([ 0.25      ,  2.14285714])
    >>> results.t()
    array([ 0.98019606,  1.87867287])
    >>> print results.Tcontrast([0,1])
    <T contrast: effect=2.14285714286, sd=1.14062281591, t=1.87867287326, df_denom=5>
    >>> print results.Fcontrast(N.identity(2))
    <F contrast: F=19.4607843137, df_denom=5, df_num=2>
    """

    def logL(self, b, Y):
        return -norm(self.whiten(Y) - N.dot(self.wdesign, b))**2 / 2.

    def __init__(self, design):
        """
        Create a `ols_model` from a design.

        :Parameters:
            design : TODO
                TODO
        """
        super(ols_model, self).__init__()
        self.initialize(design)

    def initialize(self, design):
        """
        Set design for model, prewhitening design matrix and precomputing
        covariance of coefficients (up to scale factor in front).

        :Parameters:
            design : TODO
                TODO
        """

        self.design = design
        self.wdesign = self.whiten(design)
        self.calc_beta = L.pinv(self.wdesign)
        self.normalized_cov_beta = N.dot(self.calc_beta,
                                         N.transpose(self.calc_beta))
        self.df_resid = self.wdesign.shape[0] - utils.rank(self.design)

    def whiten(self, Y):
        """
        OLS model whitener does nothing: returns Y.
        """
        return Y
    
    def est_coef(self, Y):
        """
        Estimate coefficients using lstsq, returning fitted values, Y
        and coefficients, but initialize is not called so no
        psuedo-inverse is calculated.
        """
        Z = self.whiten(Y)

        lfit = regression_results(L.lstsq(self.wdesign, Z)[0], Y)
        lfit.predict = N.dot(self.design, lfit.beta)


    def fit(self, Y):
        """
        Full fit of the model including estimate of covariance matrix, 
        (whitened) residuals and scale. 

        """
        Z = self.whiten(Y)

        lfit = regression_results(N.dot(self.calc_beta, Z), Y,
                       normalized_cov_beta=self.normalized_cov_beta)

        lfit.df_resid = self.df_resid
        lfit.predict = N.dot(self.design, lfit.beta)
        lfit.resid = Z - N.dot(self.wdesign, lfit.beta)
        lfit.scale = N.add.reduce(lfit.resid**2) / lfit.df_resid

        lfit.Z = Z 
        
        return lfit

class ar_model(ols_model):
    """
    A regression model with an AR(p) covariance structure.

    The linear autoregressive process of order p--AR(p)--is defined as:
        TODO

    Examples
    --------
    >>> import numpy as N
    >>> import numpy.random as R
    >>> 
    >>> from scipy.sandbox.models.formula import term, I
    >>> from scipy.sandbox.models.regression import ar_model
    >>> 
    >>> data={'Y':[1,3,4,5,8,10,9],
    ...       'X':range(1,8)}
    >>> f = term("X") + I
    >>> f.namespace = data
    >>> 
    >>> model = ar_model(f.design(), 2)
    >>> for i in range(6):
    ...     results = model.fit(data['Y'])
    ...     print "AR coefficients:", model.rho
    ...     rho, sigma = model.yule_walker(data["Y"] - results.predict)
    ...     model = ar_model(model.design, rho)
    ... 
    AR coefficients: [ 0.  0.]
    AR coefficients: [-0.52571491 -0.84496178]
    AR coefficients: [-0.620642   -0.88654567]
    AR coefficients: [-0.61887622 -0.88137957]
    AR coefficients: [-0.61894058 -0.88152761]
    AR coefficients: [-0.61893842 -0.88152263]
    >>> results.beta
    array([ 1.58747943, -0.56145497])
    >>> results.t()
    array([ 30.796394  ,  -2.66543144])
    >>> print results.Tcontrast([0,1])
    <T contrast: effect=-0.561454972239, sd=0.210643186553, t=-2.66543144085, df_denom=5>
    >>> print results.Fcontrast(N.identity(2))
    <F contrast: F=2762.42812716, df_denom=5, df_num=2>
    >>>
    >>> model.rho = N.array([0,0])
    >>> model.iterative_fit(data['Y'], niter=3)
    >>> print model.rho
    [-0.61887622 -0.88137957]
    """
    def __init__(self, design, rho):
        if type(rho) is type(1):
            self.order = rho
            self.rho = N.zeros(self.order, N.float64)
        else:
            self.rho = N.squeeze(N.asarray(rho))
            if len(self.rho.shape) not in [0,1]:
                raise ValueError, "AR parameters must be a scalar or a vector"
            if self.rho.shape == ():
                self.rho.shape = (1,)
            self.order = self.rho.shape[0]
        super(ar_model, self).__init__(design)

    def iterative_fit(self, Y, niter=3):
        """
        Perform an iterative two-stage procedure to estimate AR(p)
        parameters and regression coefficients simultaneously.

        :Parameters:
            Y : TODO
                TODO
            niter : ``integer``
                the number of iterations
        """
        for i in range(niter):
            self.initialize(self.design)
            results = self.fit(Y)
            self.rho, _ = self.yule_walker(Y - results.predict)

    def whiten(self, X):
        """
        Whiten a series of columns according to an AR(p)
        covariance structure.

        :Parameters:
            X : TODO
                TODO
        """
        X = N.asarray(X, N.float64)
        _X = X.copy()
        for i in range(self.order):
            _X[(i+1):] = _X[(i+1):] - self.rho[i] * X[0:-(i+1)]
        return _X

    def yule_walker(self, X, method="unbiased", df=None):
        """
        Estimate AR(p) parameters from a sequence X using Yule-Walker equation.

        unbiased or maximum-likelihood estimator (mle)

        See, for example:

        http://en.wikipedia.org/wiki/Autoregressive_moving_average_model

        :Parameters:
            X : TODO
                TODO
            method : ``string``
                Method can be "unbiased" or "mle" and this determines
                denominator in estimate of autocorrelation function (ACF)
                at lag k. If "mle", the denominator is n=r.shape[0], if
                "unbiased" the denominator is n-k.
            df : ``integer``
                Specifies the degrees of freedom. If df is supplied,
                then it is assumed the X has df degrees of
                freedom rather than n.
        """
        
        method = str(method).lower()
        if method not in ["unbiased", "mle"]:
            raise ValueError, "ACF estimation method must be 'unbiased' \
            or 'MLE'"
        X = N.asarray(X, N.float64)
        X -= X.mean()
        n = df or X.shape[0]

        if method == "unbiased":
            denom = lambda k: n - k
        else:
            denom = lambda k: n

        if len(X.shape) != 1:
            raise ValueError, "expecting a vector to estimate AR parameters"
        r = N.zeros(self.order+1, N.float64)
        r[0] = (X**2).sum() / denom(0)
        for k in range(1,self.order+1):
            r[k] = (X[0:-k]*X[k:]).sum() / denom(k)
        R = toeplitz(r[:-1])

        rho = L.solve(R, r[1:])
        sigmasq = r[0] - (r[1:]*rho).sum()
        return rho, N.sqrt(sigmasq)

class wls_model(ols_model):
    """
    A regression model with diagonal but non-identity covariance
    structure. The weights are presumed to be
    (proportional to the) inverse of the
    variance of the observations.

    >>> import numpy as N
    >>> 
    >>> from scipy.sandbox.models.formula import term, I
    >>> from scipy.sandbox.models.regression import wls_model
    >>> 
    >>> data={'Y':[1,3,4,5,2,3,4],
    ...       'X':range(1,8)}
    >>> f = term("X") + I
    >>> f.namespace = data
    >>> 
    >>> model = wls_model(f.design(), weights=range(1,8))
    >>> results = model.fit(data['Y'])
    >>> 
    >>> results.beta
    array([ 0.0952381 ,  2.91666667])
    >>> results.t()
    array([ 0.35684428,  2.0652652 ])
    >>> print results.Tcontrast([0,1])
    <T contrast: effect=2.91666666667, sd=1.41224801095, t=2.06526519708, df_denom=5>
    >>> print results.Fcontrast(N.identity(2))
    <F contrast: F=26.9986072423, df_denom=5, df_num=2>
    """
    def __init__(self, design, weights=1):
        weights = N.array(weights)
        if weights.shape == (): # scalar
            self.weights = weights
        else: 
            design_rows = design.shape[0]
            if not(weights.shape[0] == design_rows and
                   weights.size == design_rows) :
                raise ValueError(
                    'Weights must be scalar or same length as design')
            self.weights = weights.reshape(design_rows)
        super(wls_model, self).__init__(design)

    def whiten(self, X):
        """
        Whitener for WLS model, multiplies by sqrt(self.weights)
        """
        X = N.asarray(X, N.float64)

        if X.ndim == 1:
            return X * N.sqrt(self.weights)
        elif X.ndim == 2:
            c = N.sqrt(self.weights)
            v = N.zeros(X.shape, N.float64)
            for i in range(X.shape[1]):
                v[:,i] = X[:,i] * c
            return v
    
class regression_results(likelihood_model_results):
    """
    This class summarizes the fit of a linear regression model.

    It handles the output of contrasts, estimates of covariance, etc.
    """

    def __init__(self, beta, Y, normalized_cov_beta=None, scale=1.):
        super(regression_results, self).__init__(beta,
                                                 normalized_cov_beta,
                                                 scale)
        self.Y = Y

    def norm_resid(self):
        """
        Residuals, normalized to have unit length.

        Note: residuals are whitened residuals.
        """
        if not hasattr(self, 'resid'):
            raise ValueError, 'need normalized residuals to estimate standard deviation'

        sdd = utils.recipr(self.sd) / N.sqrt(self.df)
        return  self.resid * N.multiply.outer(N.ones(self.Y.shape[0]), sdd)


    def predictors(self, design):
        """
        Return linear predictor values from a design matrix.
        """
        return N.dot(design, self.beta)

    def Rsq(self, adjusted=False):
        """
        Return the R^2 value for each row of the response Y.
        """
        self.Ssq = N.std(self.Z,axis=0)**2
        ratio = self.scale / self.Ssq
        if not adjusted: ratio *= ((self.Y.shape[0] - 1) / self.df_resid)
        return 1 - ratio

def isestimable(C, D):
    """
    From an q x p contrast matrix C and an n x p design matrix D, checks
    if the contrast C is estimable by looking at the rank of vstack([C,D]) and
    verifying it is the same as the rank of D.
    """
    if C.ndim == 1:
        C.shape = (C.shape[0], 1)
    new = N.vstack([C, D])
    if utils.rank(new) != utils.rank(D):
        return False
    return True