1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
|
"""
This module implements some standard regression models: OLS and WLS
models, as well as an AR(p) regression model.
Models are specified with a design matrix and are fit using their
'fit' method.
Subclasses that have more complicated covariance matrices
should write over the 'whiten' method as the fit method
prewhitens the response by calling 'whiten'.
General reference for regression models:
'Introduction to Linear Regression Analysis', Douglas C. Montgomery,
Elizabeth A. Peck, G. Geoffrey Vining. Wiley, 2006.
"""
__docformat__ = 'restructuredtext en'
import numpy as N
import numpy.linalg as L
from scipy.linalg import norm, toeplitz
from scipy.sandbox.models.model import likelihood_model, \
likelihood_model_results
from scipy.sandbox.models import utils
class ols_model(likelihood_model):
"""
A simple ordinary least squares model.
Examples
--------
>>> import numpy as N
>>>
>>> from scipy.sandbox.models.formula import term, I
>>> from scipy.sandbox.models.regression import ols_model
>>>
>>> data={'Y':[1,3,4,5,2,3,4],
... 'X':range(1,8)}
>>> f = term("X") + I
>>> f.namespace = data
>>>
>>> model = ols_model(f.design())
>>> results = model.fit(data['Y'])
>>>
>>> results.beta
array([ 0.25 , 2.14285714])
>>> results.t()
array([ 0.98019606, 1.87867287])
>>> print results.Tcontrast([0,1])
<T contrast: effect=2.14285714286, sd=1.14062281591, t=1.87867287326, df_denom=5>
>>> print results.Fcontrast(N.identity(2))
<F contrast: F=19.4607843137, df_denom=5, df_num=2>
"""
def logL(self, b, Y):
return -norm(self.whiten(Y) - N.dot(self.wdesign, b))**2 / 2.
def __init__(self, design):
"""
Create a `ols_model` from a design.
:Parameters:
design : TODO
TODO
"""
super(ols_model, self).__init__()
self.initialize(design)
def initialize(self, design):
"""
Set design for model, prewhitening design matrix and precomputing
covariance of coefficients (up to scale factor in front).
:Parameters:
design : TODO
TODO
"""
self.design = design
self.wdesign = self.whiten(design)
self.calc_beta = L.pinv(self.wdesign)
self.normalized_cov_beta = N.dot(self.calc_beta,
N.transpose(self.calc_beta))
self.df_resid = self.wdesign.shape[0] - utils.rank(self.design)
def whiten(self, Y):
"""
OLS model whitener does nothing: returns Y.
"""
return Y
def est_coef(self, Y):
"""
Estimate coefficients using lstsq, returning fitted values, Y
and coefficients, but initialize is not called so no
psuedo-inverse is calculated.
"""
Z = self.whiten(Y)
lfit = regression_results(L.lstsq(self.wdesign, Z)[0], Y)
lfit.predict = N.dot(self.design, lfit.beta)
def fit(self, Y):
"""
Full fit of the model including estimate of covariance matrix,
(whitened) residuals and scale.
"""
Z = self.whiten(Y)
lfit = regression_results(N.dot(self.calc_beta, Z), Y,
normalized_cov_beta=self.normalized_cov_beta)
lfit.df_resid = self.df_resid
lfit.predict = N.dot(self.design, lfit.beta)
lfit.resid = Z - N.dot(self.wdesign, lfit.beta)
lfit.scale = N.add.reduce(lfit.resid**2) / lfit.df_resid
lfit.Z = Z
return lfit
class ar_model(ols_model):
"""
A regression model with an AR(p) covariance structure.
The linear autoregressive process of order p--AR(p)--is defined as:
TODO
Examples
--------
>>> import numpy as N
>>> import numpy.random as R
>>>
>>> from scipy.sandbox.models.formula import term, I
>>> from scipy.sandbox.models.regression import ar_model
>>>
>>> data={'Y':[1,3,4,5,8,10,9],
... 'X':range(1,8)}
>>> f = term("X") + I
>>> f.namespace = data
>>>
>>> model = ar_model(f.design(), 2)
>>> for i in range(6):
... results = model.fit(data['Y'])
... print "AR coefficients:", model.rho
... rho, sigma = model.yule_walker(data["Y"] - results.predict)
... model = ar_model(model.design, rho)
...
AR coefficients: [ 0. 0.]
AR coefficients: [-0.52571491 -0.84496178]
AR coefficients: [-0.620642 -0.88654567]
AR coefficients: [-0.61887622 -0.88137957]
AR coefficients: [-0.61894058 -0.88152761]
AR coefficients: [-0.61893842 -0.88152263]
>>> results.beta
array([ 1.58747943, -0.56145497])
>>> results.t()
array([ 30.796394 , -2.66543144])
>>> print results.Tcontrast([0,1])
<T contrast: effect=-0.561454972239, sd=0.210643186553, t=-2.66543144085, df_denom=5>
>>> print results.Fcontrast(N.identity(2))
<F contrast: F=2762.42812716, df_denom=5, df_num=2>
>>>
>>> model.rho = N.array([0,0])
>>> model.iterative_fit(data['Y'], niter=3)
>>> print model.rho
[-0.61887622 -0.88137957]
"""
def __init__(self, design, rho):
if type(rho) is type(1):
self.order = rho
self.rho = N.zeros(self.order, N.float64)
else:
self.rho = N.squeeze(N.asarray(rho))
if len(self.rho.shape) not in [0,1]:
raise ValueError, "AR parameters must be a scalar or a vector"
if self.rho.shape == ():
self.rho.shape = (1,)
self.order = self.rho.shape[0]
super(ar_model, self).__init__(design)
def iterative_fit(self, Y, niter=3):
"""
Perform an iterative two-stage procedure to estimate AR(p)
parameters and regression coefficients simultaneously.
:Parameters:
Y : TODO
TODO
niter : ``integer``
the number of iterations
"""
for i in range(niter):
self.initialize(self.design)
results = self.fit(Y)
self.rho, _ = self.yule_walker(Y - results.predict)
def whiten(self, X):
"""
Whiten a series of columns according to an AR(p)
covariance structure.
:Parameters:
X : TODO
TODO
"""
X = N.asarray(X, N.float64)
_X = X.copy()
for i in range(self.order):
_X[(i+1):] = _X[(i+1):] - self.rho[i] * X[0:-(i+1)]
return _X
def yule_walker(self, X, method="unbiased", df=None):
"""
Estimate AR(p) parameters from a sequence X using Yule-Walker equation.
unbiased or maximum-likelihood estimator (mle)
See, for example:
http://en.wikipedia.org/wiki/Autoregressive_moving_average_model
:Parameters:
X : TODO
TODO
method : ``string``
Method can be "unbiased" or "mle" and this determines
denominator in estimate of autocorrelation function (ACF)
at lag k. If "mle", the denominator is n=r.shape[0], if
"unbiased" the denominator is n-k.
df : ``integer``
Specifies the degrees of freedom. If df is supplied,
then it is assumed the X has df degrees of
freedom rather than n.
"""
method = str(method).lower()
if method not in ["unbiased", "mle"]:
raise ValueError, "ACF estimation method must be 'unbiased' \
or 'MLE'"
X = N.asarray(X, N.float64)
X -= X.mean()
n = df or X.shape[0]
if method == "unbiased":
denom = lambda k: n - k
else:
denom = lambda k: n
if len(X.shape) != 1:
raise ValueError, "expecting a vector to estimate AR parameters"
r = N.zeros(self.order+1, N.float64)
r[0] = (X**2).sum() / denom(0)
for k in range(1,self.order+1):
r[k] = (X[0:-k]*X[k:]).sum() / denom(k)
R = toeplitz(r[:-1])
rho = L.solve(R, r[1:])
sigmasq = r[0] - (r[1:]*rho).sum()
return rho, N.sqrt(sigmasq)
class wls_model(ols_model):
"""
A regression model with diagonal but non-identity covariance
structure. The weights are presumed to be
(proportional to the) inverse of the
variance of the observations.
>>> import numpy as N
>>>
>>> from scipy.sandbox.models.formula import term, I
>>> from scipy.sandbox.models.regression import wls_model
>>>
>>> data={'Y':[1,3,4,5,2,3,4],
... 'X':range(1,8)}
>>> f = term("X") + I
>>> f.namespace = data
>>>
>>> model = wls_model(f.design(), weights=range(1,8))
>>> results = model.fit(data['Y'])
>>>
>>> results.beta
array([ 0.0952381 , 2.91666667])
>>> results.t()
array([ 0.35684428, 2.0652652 ])
>>> print results.Tcontrast([0,1])
<T contrast: effect=2.91666666667, sd=1.41224801095, t=2.06526519708, df_denom=5>
>>> print results.Fcontrast(N.identity(2))
<F contrast: F=26.9986072423, df_denom=5, df_num=2>
"""
def __init__(self, design, weights=1):
weights = N.array(weights)
if weights.shape == (): # scalar
self.weights = weights
else:
design_rows = design.shape[0]
if not(weights.shape[0] == design_rows and
weights.size == design_rows) :
raise ValueError(
'Weights must be scalar or same length as design')
self.weights = weights.reshape(design_rows)
super(wls_model, self).__init__(design)
def whiten(self, X):
"""
Whitener for WLS model, multiplies by sqrt(self.weights)
"""
X = N.asarray(X, N.float64)
if X.ndim == 1:
return X * N.sqrt(self.weights)
elif X.ndim == 2:
c = N.sqrt(self.weights)
v = N.zeros(X.shape, N.float64)
for i in range(X.shape[1]):
v[:,i] = X[:,i] * c
return v
class regression_results(likelihood_model_results):
"""
This class summarizes the fit of a linear regression model.
It handles the output of contrasts, estimates of covariance, etc.
"""
def __init__(self, beta, Y, normalized_cov_beta=None, scale=1.):
super(regression_results, self).__init__(beta,
normalized_cov_beta,
scale)
self.Y = Y
def norm_resid(self):
"""
Residuals, normalized to have unit length.
Note: residuals are whitened residuals.
"""
if not hasattr(self, 'resid'):
raise ValueError, 'need normalized residuals to estimate standard deviation'
sdd = utils.recipr(self.sd) / N.sqrt(self.df)
return self.resid * N.multiply.outer(N.ones(self.Y.shape[0]), sdd)
def predictors(self, design):
"""
Return linear predictor values from a design matrix.
"""
return N.dot(design, self.beta)
def Rsq(self, adjusted=False):
"""
Return the R^2 value for each row of the response Y.
"""
self.Ssq = N.std(self.Z,axis=0)**2
ratio = self.scale / self.Ssq
if not adjusted: ratio *= ((self.Y.shape[0] - 1) / self.df_resid)
return 1 - ratio
def isestimable(C, D):
"""
From an q x p contrast matrix C and an n x p design matrix D, checks
if the contrast C is estimable by looking at the rank of vstack([C,D]) and
verifying it is the same as the rank of D.
"""
if C.ndim == 1:
C.shape = (C.shape[0], 1)
new = N.vstack([C, D])
if utils.rank(new) != utils.rank(D):
return False
return True
|