File: rlm.py

package info (click to toggle)
python-scipy 0.6.0-12
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 32,016 kB
  • ctags: 46,675
  • sloc: cpp: 124,854; ansic: 110,614; python: 108,664; fortran: 76,260; objc: 424; makefile: 384; sh: 10
file content (80 lines) | stat: -rw-r--r-- 2,286 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
"""
Robust linear models
"""
import numpy as N

from scipy.sandbox.models.regression import wls_model
from scipy.sandbox.models.robust import norms, scale

class model(wls_model):

    niter = 20
    scale_est = 'MAD'

    def __init__(self, design, M=norms.Hampel()):
        self.M = M
        self.weights = 1
        self.initialize(design)

    def __iter__(self):
        self.iter = 0
        self.dev = N.inf
        return self

    def deviance(self, results=None):
        """
        Return (unnormalized) log-likelihood from M estimator.

        Note that self.scale is interpreted as a variance in ols_model, so
        we divide the residuals by its sqrt.
        """
        if results is None:
            results = self.results
        return self.M((results.Y - results.predict) / N.sqrt(results.scale)).sum()

    def next(self):
        results = self.results
        self.weights = self.M.weights((results.Y - results.predict) / N.sqrt(results.scale))
        self.initialize(self.design)
        results = wls_model.fit(self, results.Y)
        self.scale = results.scale = self.estimate_scale(results)
        self.iter += 1
        return results

    def cont(self, results, tol=1.0e-5):
        """
        Continue iterating, or has convergence been obtained?
        """
        if self.iter >= model.niter:
            return False

        curdev = self.deviance(results)
        if N.fabs((self.dev - curdev) / curdev) < tol:
            return False
        self.dev = curdev
        
        return True

    def estimate_scale(self, results):
        """
        Note that self.scale is interpreted as a variance in ols_model, so
        we return MAD(resid)**2 by default. 
        """
        resid = results.Y - results.predict
        if self.scale_est == 'MAD':
            return scale.MAD(resid)**2
        elif self.scale_est == 'Huber2':
            return scale.huber(resid)**2
        else:
            return scale.scale_est(self, resid)**2
        
    def fit(self, Y):
        
        iter(self)
        self.results = wls_model.fit(self, Y)
        self.scale = self.results.scale = self.estimate_scale(self.results)
        
        while self.cont(self.results):
            self.results = self.next()

        return self.results