1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
import numpy as N
class RobustNorm:
def __call__(self, z):
return self.rho(z)
class LeastSquares(RobustNorm):
"""
Least squares rho for M estimation.
DC Montgomery, EA Peck. \'Introduction to Linear Regression Analysis\',
John Wiley and Sons, Inc., New York, 2001.
"""
def rho(self, z):
return N.power(z, 2) * 0.5
def psi(self, z):
return N.asarray(z)
def weights(self, z):
return N.ones(z.shape, N.float64)
class HuberT(RobustNorm):
"""
Huber\'s T for M estimation.
DC Montgomery, EA Peck. \'Introduction to Linear Regression Analysis\',
John Wiley and Sons, Inc., New York, 2001.
R Venables, B Ripley. \'Modern Applied Statistics in S\'
Springer, New York, 2002.
"""
t = 1.345
def subset(self, z):
z = N.asarray(z)
return N.less_equal(N.fabs(z), HuberT.t)
def rho(self, z):
z = N.asarray(z)
test = self.subset(z)
return (test * 0.5 * N.power(z, 2) +
(1 - test) * (N.fabs(z) * HuberT.t - 0.5 * HuberT.t**2))
def psi(self, z):
z = N.asarray(z)
test = self.subset(z)
return test * z + (1 - test) * HuberT.t * N.sign(z)
def weights(self, z):
z = N.asarray(z)
test = self.subset(z)
return test + (1 - test) * HuberT.t / N.fabs(z)
class RamsayE(RobustNorm):
"""
Ramsay\'s Ea for M estimation.
DC Montgomery, EA Peck. \'Introduction to Linear Regression Analysis\',
John Wiley and Sons, Inc., New York, 2001.
"""
a = 0.3
def rho(self, z):
z = N.asarray(z)
return (1 - N.exp(-RamsayE.a * N.fabs(z)) *
(1 + RamsayE.a * N.fabs(z))) / RamsayE.a**2
def psi(self, z):
z = N.asarray(z)
return z * N.exp(-RamsayE.a * N.fabs(z))
def weights(self, z):
z = N.asarray(z)
return N.exp(-RamsayE.a * N.fabs(z))
class AndrewWave(RobustNorm):
"""
Andrew\'s wave for M estimation.
DC Montgomery, EA Peck. \'Introduction to Linear Regression Analysis\',
John Wiley and Sons, Inc., New York, 2001.
"""
a = 1.339
def subset(self, z):
z = N.asarray(z)
return N.less_equal(N.fabs(z), RamsayE.a * N.pi)
def rho(self, z):
a = AndrewWave.a
z = N.asarray(z)
test = self.subset(z)
return (test * a * (1 - N.cos(z / a)) +
(1 - test) * 2 * a)
def psi(self, z):
a = AndrewWave.a
z = N.asarray(z)
test = self.subset(z)
return test * N.sin(z / a)
def weights(self, z):
a = AndrewWave.a
z = N.asarray(z)
test = self.subset(z)
return test * N.sin(z / a) / (z / a)
class TrimmedMean(RobustNorm):
"""
Trimmed mean function for M-estimation.
R Venables, B Ripley. \'Modern Applied Statistics in S\'
Springer, New York, 2002.
"""
c = 2
def subset(self, z):
z = N.asarray(z)
return N.less_equal(N.fabs(z), TrimmedMean.c)
def rho(self, z):
z = N.asarray(z)
test = self.subset(z)
return test * N.power(z, 2) * 0.5
def psi(self, z):
z = N.asarray(z)
test = self.subset(z)
return test * z
def weights(self, z):
z = N.asarray(z)
test = self.subset(z)
return test
class Hampel(RobustNorm):
"""
Hampel function for M-estimation.
R Venables, B Ripley. \'Modern Applied Statistics in S\'
Springer, New York, 2002.
"""
a = 2
b = 4
c = 8
def subset(self, z):
z = N.fabs(N.asarray(z))
t1 = N.less_equal(z, Hampel.a)
t2 = N.less_equal(z, Hampel.b) * N.greater(z, Hampel.a)
t3 = N.less_equal(z, Hampel.c) * N.greater(z, Hampel.b)
return t1, t2, t3
def psi(self, z):
z = N.asarray(z)
a = Hampel.a; b = Hampel.b; c = Hampel.c
t1, t2, t3 = self.subset(z)
s = N.sign(z); z = N.fabs(z)
v = s * (t1 * z +
t2 * a +
t3 * a * (c - z) / (c - b))
return v
def rho(self, z):
z = N.fabs(z)
a = Hampel.a; b = Hampel.b; c = Hampel.c
t1, t2, t3 = self.subset(z)
v = (t1 * z**2 * 0.5 +
t2 * (a * z - a**2 * 0.5) +
t3 * (a * (c * z - z**2 * 0.5) / (c - b) - 7 * a**2 / 2.) +
(1 - t1 + t2 + t3) * a * (b + c - a))
return v
def weights(self, z):
z = N.asarray(z)
test = N.not_equal(z, 0)
return self.psi(z) * test / z + (1 - test)
class TukeyBiweight(RobustNorm):
"""
Tukey\'s biweight function for M-estimation.
R Venables, B Ripley. \'Modern Applied Statistics in S\'
Springer, New York, 2002.
"""
R = 4.685
def subset(self, z):
z = N.fabs(N.asarray(z))
return N.less_equal(z, self.R)
def psi(self, z):
z = N.asarray(z)
subset = self.subset(z)
return z * (1 - (z / self.R)**2)**2 * subset
def rho(self, z):
subset = self.subset(z)
return -(1 - (z / self.R)**2)**3 * subset * self.R**2 / 6
def weights(self, z):
subset = self.subset(z)
return (1 - (z / self.R)**2)**2 * subset
|