File: norms.py

package info (click to toggle)
python-scipy 0.6.0-12
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 32,016 kB
  • ctags: 46,675
  • sloc: cpp: 124,854; ansic: 110,614; python: 108,664; fortran: 76,260; objc: 424; makefile: 384; sh: 10
file content (223 lines) | stat: -rw-r--r-- 5,289 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import numpy as N

class RobustNorm:
    def __call__(self, z):
        return self.rho(z)

class LeastSquares(RobustNorm):

    """
    Least squares rho for M estimation.

    DC Montgomery, EA Peck. \'Introduction to Linear Regression Analysis\',
    John Wiley and Sons, Inc., New York, 2001.

    """

    def rho(self, z):
        return N.power(z, 2) * 0.5

    def psi(self, z):
        return N.asarray(z)

    def weights(self, z):
        return N.ones(z.shape, N.float64)

class HuberT(RobustNorm):

    """
    Huber\'s T for M estimation.

    DC Montgomery, EA Peck. \'Introduction to Linear Regression Analysis\',
    John Wiley and Sons, Inc., New York, 2001.

    R Venables, B Ripley. \'Modern Applied Statistics in S\'
    Springer, New York, 2002.

    """

    t = 1.345
    
    def subset(self, z):
        z = N.asarray(z)
        return N.less_equal(N.fabs(z), HuberT.t)

    def rho(self, z):
        z = N.asarray(z)
        test = self.subset(z)
        return (test * 0.5 * N.power(z, 2) +
                (1 - test) * (N.fabs(z) * HuberT.t - 0.5 * HuberT.t**2))

    def psi(self, z):
        z = N.asarray(z)
        test = self.subset(z)
        return test * z + (1 - test) * HuberT.t * N.sign(z)

    def weights(self, z):
        z = N.asarray(z)
        test = self.subset(z)
        return test + (1 - test) * HuberT.t / N.fabs(z)

class RamsayE(RobustNorm):

    """
    Ramsay\'s Ea for M estimation.

    DC Montgomery, EA Peck. \'Introduction to Linear Regression Analysis\',
    John Wiley and Sons, Inc., New York, 2001.

    """
    a = 0.3

    def rho(self, z):
        z = N.asarray(z)
        return (1 - N.exp(-RamsayE.a * N.fabs(z)) *
                (1 + RamsayE.a * N.fabs(z))) / RamsayE.a**2

    def psi(self, z):
        z = N.asarray(z)
        return z * N.exp(-RamsayE.a * N.fabs(z))

    def weights(self, z):
        z = N.asarray(z)
        return N.exp(-RamsayE.a * N.fabs(z))

class AndrewWave(RobustNorm):

    """
    Andrew\'s wave for M estimation.

    DC Montgomery, EA Peck. \'Introduction to Linear Regression Analysis\',
    John Wiley and Sons, Inc., New York, 2001.

    """
    a = 1.339

    def subset(self, z):
        z = N.asarray(z)
        return N.less_equal(N.fabs(z), RamsayE.a * N.pi)

    def rho(self, z):
        a = AndrewWave.a
        z = N.asarray(z)
        test = self.subset(z)
        return (test * a * (1 - N.cos(z / a)) +
                (1 - test) * 2 * a)

    def psi(self, z):
        a = AndrewWave.a
        z = N.asarray(z)
        test = self.subset(z)
        return test * N.sin(z / a)

    def weights(self, z):
        a = AndrewWave.a
        z = N.asarray(z)
        test = self.subset(z)
        return test * N.sin(z / a) / (z / a)

class TrimmedMean(RobustNorm):
    """

    Trimmed mean function for M-estimation.

    R Venables, B Ripley. \'Modern Applied Statistics in S\'
    Springer, New York, 2002.
    """

    c = 2
    
    def subset(self, z):
        z = N.asarray(z)
        return N.less_equal(N.fabs(z), TrimmedMean.c)

    def rho(self, z):
        z = N.asarray(z)
        test = self.subset(z)
        return test * N.power(z, 2) * 0.5

    def psi(self, z):
        z = N.asarray(z)
        test = self.subset(z)
        return test * z

    def weights(self, z):
        z = N.asarray(z)
        test = self.subset(z)
        return test

class Hampel(RobustNorm):
    """

    Hampel function for M-estimation.

    R Venables, B Ripley. \'Modern Applied Statistics in S\'
    Springer, New York, 2002.
    """

    a = 2
    b = 4
    c = 8
    
    def subset(self, z):
        z = N.fabs(N.asarray(z))
        t1 = N.less_equal(z, Hampel.a)
        t2 = N.less_equal(z, Hampel.b) * N.greater(z, Hampel.a)
        t3 = N.less_equal(z, Hampel.c) * N.greater(z, Hampel.b)
        return t1, t2, t3

    def psi(self, z):
        z = N.asarray(z)
        a = Hampel.a; b = Hampel.b; c = Hampel.c
        t1, t2, t3 = self.subset(z)
        s = N.sign(z); z = N.fabs(z)
        v = s * (t1 * z +
                 t2 * a +
                 t3 * a * (c - z) / (c - b))
        return v

    def rho(self, z):
        z = N.fabs(z)
        a = Hampel.a; b = Hampel.b; c = Hampel.c
        t1, t2, t3 = self.subset(z)
        v = (t1 * z**2 * 0.5 +
             t2 * (a * z - a**2 * 0.5) +
             t3 * (a * (c * z - z**2 * 0.5) / (c - b) - 7 * a**2 / 2.) +
             (1 - t1 + t2 + t3) * a * (b + c - a))
        return v
    
    def weights(self, z):
        z = N.asarray(z)
        test = N.not_equal(z, 0)
        return self.psi(z) * test / z + (1 - test)

class TukeyBiweight(RobustNorm):
    """

    Tukey\'s biweight function for M-estimation.

    R Venables, B Ripley. \'Modern Applied Statistics in S\'
    Springer, New York, 2002.
    """

    
    R = 4.685
    
    def subset(self, z):
        z = N.fabs(N.asarray(z))
        return N.less_equal(z, self.R)

    def psi(self, z):
        z = N.asarray(z)
        subset = self.subset(z)
        return z * (1 - (z / self.R)**2)**2 * subset

    def rho(self, z):
        subset = self.subset(z)
        return -(1 - (z / self.R)**2)**3 * subset * self.R**2 / 6 
    
    def weights(self, z):
        subset = self.subset(z)
        return (1 - (z / self.R)**2)**2 * subset