File: ruge_stuben.h

package info (click to toggle)
python-scipy 0.6.0-12
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 32,016 kB
  • ctags: 46,675
  • sloc: cpp: 124,854; ansic: 110,614; python: 108,664; fortran: 76,260; objc: 424; makefile: 384; sh: 10
file content (387 lines) | stat: -rw-r--r-- 10,149 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
#ifndef RUGE_STUBEN_H
#define RUGE_STUBEN_H

#include <iostream>
#include <vector>
#include <iterator>
#include <assert.h>


//this will increase the complexity greatly!
//#define DEBUG

enum NodeType {U_NODE,  C_NODE, F_NODE};


template<class T>
void rs_strong_connections(const int n_row,
			   const T theta,
			   const int Ap[], const int Aj[], const T Ax[],
			   std::vector<int> * Sp, std::vector<int> * Sj, std::vector<T> * Sx){
    //Sp,Sj form a CSR representation where the i-th row contains
    //the indices of all the strong connections from node i
    Sp->push_back(0);

    //Compute lambdas for each node
    for(int i = 0; i < n_row; i++){
        T min_offdiagonal = 0.0;

        int row_start = Ap[i];
        int row_end   = Ap[i+1];
        for(int jj = row_start; jj < row_end; jj++){
            min_offdiagonal = std::min(min_offdiagonal,Ax[jj]); //assumes diagonal is positive!
        }

        T threshold = theta*min_offdiagonal;
        for(int jj = row_start; jj < row_end; jj++){
            if(Ax[jj] < threshold){
	            Sj->push_back(Aj[jj]);
	            Sx->push_back(Ax[jj]);
            }
        }

        Sp->push_back(Sj->size());
    }
}




template<class T>
void rs_interpolation(const int n_nodes,
		      const int Ap[], const int Aj[], const T Ax[],
		      const int Sp[], const int Sj[], const T Sx[],
		      const int Tp[], const int Tj[], const T Tx[],
		      std::vector<int> * Bp, std::vector<int> * Bj, std::vector<T> * Bx){
  
  std::vector<int> lambda(n_nodes,0);

  //compute lambdas
  for(int i = 0; i < n_nodes; i++){
    lambda[i] = Tp[i+1] - Tp[i];
  }


  //for each value of lambda, create an interval of nodes with that value
  // ptr - is the first index of the interval
  // count - is the number of indices in that interval
  // index to node - the node located at a given index
  // node to index - the index of a given node
  std::vector<int> interval_ptr(n_nodes,0);
  std::vector<int> interval_count(n_nodes,0);
  std::vector<int> index_to_node(n_nodes);
  std::vector<int> node_to_index(n_nodes);

  for(int i = 0; i < n_nodes; i++){
    interval_count[lambda[i]]++;
  }
  for(int i = 0, cumsum = 0; i < n_nodes; i++){
    interval_ptr[i] = cumsum;
    cumsum += interval_count[i];
    interval_count[i] = 0;
  }
  for(int i = 0; i < n_nodes; i++){
    int lambda_i = lambda[i];
    int index    = interval_ptr[lambda_i]+interval_count[lambda_i];
    index_to_node[index] = i;
    node_to_index[i]     = index;
    interval_count[lambda_i]++;
  }



  

  std::vector<NodeType> NodeSets(n_nodes,U_NODE);

  //Now add elements to C and F, in decending order of lambda
  for(int top_index = n_nodes - 1; top_index > -1; top_index--){
    int i        = index_to_node[top_index];
    int lambda_i = lambda[i];
#ifdef DEBUG
    {
#ifdef DEBUG_PRINT
      std::cout << "top_index " << top_index << std::endl;
      std::cout << "i         " << i << std::endl;
      std::cout << "lambda_i  " << lambda_i << std::endl;

      for(int i = 0; i < n_nodes; i++){
	std::cout << i << "=";
	if(NodeSets[i] == U_NODE)
	  std::cout << "U";
	else if(NodeSets[i] == F_NODE)
	  std::cout << "F";
	else
	  std::cout << "C";
	std::cout << " ";
      }
      std::cout << std::endl;

      std::cout << "node_to_index" << std::endl;
      for(int i = 0; i < n_nodes; i++){
	std::cout << i << "->" << node_to_index[i] << "  ";
      }
      std::cout << std::endl;
      std::cout << "index_to_node" << std::endl;
      for(int i = 0; i < n_nodes; i++){
	std::cout << i << "->" << index_to_node[i] << "  ";
      }
      std::cout << std::endl;

      std::cout << "interval_count ";
      for(int i = 0; i < n_nodes; i++){
	std::cout << interval_count[i] << " ";
      }
      std::cout << std::endl;
#endif

      //make sure arrays are correct
      for(int n = 0; n < n_nodes; n++){
	assert(index_to_node[node_to_index[n]] == n);
      }

      //make sure intervals are reasonable
      int sum_intervals = 0;
      for(int n = 0; n < n_nodes; n++){
	assert(interval_count[n] >= 0);
	if(interval_count[n] > 0){
	  assert(interval_ptr[n] == sum_intervals);
	}
	sum_intervals += interval_count[n];
      }
      assert(sum_intervals == top_index+1);

      
      if(interval_count[lambda_i] <= 0){
	std::cout << "top_index " << top_index << std::endl;
	std::cout << "lambda_i " << lambda_i << std::endl;
	std::cout << "interval_count[lambda_i] " << interval_count[lambda_i] << std::endl;
	std::cout << "top_index " << top_index << std::endl;
	std::cout << "i         " << i << std::endl;
	std::cout << "lambda_i  " << lambda_i << std::endl;
      }
      
      
      for(int n = 0; n <= top_index; n++){
	assert(NodeSets[index_to_node[n]] != C_NODE);
      }
    }
    assert(node_to_index[i] == top_index);
    assert(interval_ptr[lambda_i] + interval_count[lambda_i] - 1 == top_index);
    //max interval should have at least one element
    assert(interval_count[lambda_i] > 0);    
#endif


    //remove i from its interval
    interval_count[lambda_i]--;
    

    if(NodeSets[i] == F_NODE){
      continue;
    } else {
      assert(NodeSets[i] == U_NODE);

      NodeSets[i] = C_NODE;

      //For each j in S^T_i /\ U
      for(int jj = Tp[i]; jj < Tp[i+1]; jj++){
	int j = Tj[jj];

	if(NodeSets[j] == U_NODE){
	  NodeSets[j] = F_NODE;
	  
	  //For each k in S_j /\ U
	  for(int kk = Sp[j]; kk < Sp[j+1]; kk++){
	    int k = Sj[kk];

	    if(NodeSets[k] == U_NODE){	      
	      //move k to the end of its current interval
	      assert(lambda[j] < n_nodes - 1);//this would cause problems!

	      int lambda_k = lambda[k];
	      int old_pos  = node_to_index[k];
	      int new_pos  = interval_ptr[lambda_k] + interval_count[lambda_k] - 1;

	      node_to_index[index_to_node[old_pos]] = new_pos;
	      node_to_index[index_to_node[new_pos]] = old_pos;
	      std::swap(index_to_node[old_pos],index_to_node[new_pos]);
	      
	      //update intervals
	      interval_count[lambda_k]   -= 1;
	      interval_count[lambda_k+1] += 1;
	      interval_ptr[lambda_k+1]    = new_pos;

	      //increment lambda_k
	      lambda[k]++;

#ifdef DEBUG
	      assert(interval_count[lambda_k]   >= 0);
	      assert(interval_count[lambda_k+1] >  0);
	      assert(interval_ptr[lambda[k]] <= node_to_index[k]);
	      assert(node_to_index[k] < interval_ptr[lambda[k]] + interval_count[lambda[k]]);
#endif
	    }
	  }
	}
      }

      //For each j in S_i /\ U
      for(int jj = Sp[i]; jj < Sp[i+1]; jj++){
	int j = Sj[jj];
	if(NodeSets[j] == U_NODE){            //decrement lambda for node j
	  assert(lambda[j] > 0);//this would cause problems!

	  //move j to the beginning of its current interval
	  int lambda_j = lambda[j];
	  int old_pos  = node_to_index[j];
	  int new_pos  = interval_ptr[lambda_j]; 
	      
	  node_to_index[index_to_node[old_pos]] = new_pos;
	  node_to_index[index_to_node[new_pos]] = old_pos;
	  std::swap(index_to_node[old_pos],index_to_node[new_pos]);
	      
	  //update intervals
	  interval_count[lambda_j]   -= 1;
	  interval_count[lambda_j-1] += 1;
	  interval_ptr[lambda_j]     += 1;
	  interval_ptr[lambda_j-1]    = interval_ptr[lambda_j] - interval_count[lambda_j-1];

	  //decrement lambda_j
	  lambda[j]--;

#ifdef DEBUG
	  assert(interval_count[lambda_j]   >= 0);
	  assert(interval_count[lambda_j-1] >  0);
	  assert(interval_ptr[lambda[j]] <= node_to_index[j]);
	  assert(node_to_index[j] < interval_ptr[lambda[j]] + interval_count[lambda[j]]);
#endif
	}
      }
    }
  }




#ifdef DEBUG
  //make sure each f-node has at least one strong c-node neighbor
  for(int i = 0; i < n_nodes; i++){
    if(NodeSets[i] == F_NODE){
      int row_start = Sp[i];
      int row_end   = Sp[i+1];
      bool has_c_neighbor = false;
      for(int jj = row_start; jj < row_end; jj++){
	if(NodeSets[Sj[jj]] == C_NODE){
	  has_c_neighbor = true;
	  break;
	}
      }
      assert(has_c_neighbor);
    }   
  }
#endif

  //Now construct interpolation operator
  std::vector<T> d_k(n_nodes,0);
  std::vector<bool> C_i(n_nodes,0);
  Bp->push_back(0);
  for(int i = 0; i < n_nodes; i++){
    if(NodeSets[i] == C_NODE){
      //interpolate directly
      Bj->push_back(i);
      Bx->push_back(1);      
      Bp->push_back(Bj->size());
    } else {
      //F_NODE
      
      //Step 4
      T d_i = 0; //denominator for this row
      for(int jj = Ap[i]; jj < Ap[i+1]; jj++){ d_i += Ax[jj]; }
      for(int jj = Sp[i]; jj < Sp[i+1]; jj++){ d_i -= Sx[jj]; }
      
      //Create C_i, initialize d_k
      for(int jj = Sp[i]; jj < Sp[i+1]; jj++){ 
	int j = Sj[jj];
	if(NodeSets[j] == C_NODE){
	  C_i[j] = true;
	  d_k[j] = Sx[jj];
	}
      }

      bool Sj_intersects_Ci = true; //in the case that i has no F-neighbors
      for(int jj = Sp[i]; jj < Sp[i+1]; jj++){ //for j in D^s_i
	int    j = Sj[jj];
	T   a_ij = Sx[jj];
	T   a_jl = 0;

	if(NodeSets[j] != F_NODE){continue;}

	//Step 5
	Sj_intersects_Ci = false;

	//compute sum a_jl
	for(int ll = Sp[j]; ll < Sp[j+1]; ll++){
	  if(C_i[Sj[ll]]){
	    Sj_intersects_Ci = true;
	    a_jl += Sx[ll];
	  }	    
	}

	if(!Sj_intersects_Ci){ break; }

	for(int kk = Sp[j]; kk < Sp[j+1]; kk++){
	  int   k = Sj[kk];
	  T  a_jk = Sx[kk];
	  if(C_i[k]){
	    d_k[k] += a_ij*a_jk / a_jl;
	  }	    
	}
      }

      //Step 6
      if(Sj_intersects_Ci){
	for(int jj = Sp[i]; jj < Sp[i+1]; jj++){ 
	  int j = Sj[jj];
	  if(NodeSets[j] == C_NODE){
	    Bj->push_back(j);
	    Bx->push_back(-d_k[j]/d_i);      
	  }
	}	
	Bp->push_back(Bj->size());
      } else { //make i a C_NODE
	NodeSets[i] = C_NODE;
	Bj->push_back(i);
	Bx->push_back(1);      
	Bp->push_back(Bj->size());
      }
      

      //Clear C_i,d_k
      for(int jj = Sp[i]; jj < Sp[i+1]; jj++){ 
	int j = Sj[jj];
	C_i[j] = false;
	d_k[j] = 0;
      }

    }
      
  }

  //for each c-node, determine its index in the coarser lvl
  std::vector<int> cnode_index(n_nodes,-1);
  int n_cnodes = 0;
  for(int i = 0; i < n_nodes; i++){
    if(NodeSets[i] == C_NODE)
      cnode_index[i] = n_cnodes++;
  }
  //map old C indices to coarse indices
  for(std::vector<int>::iterator i = Bj->begin(); i != Bj->end(); i++){
    *i = cnode_index[*i];
  }

  
  
}

#endif