File: smoothed_aggregation.h

package info (click to toggle)
python-scipy 0.6.0-12
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 32,016 kB
  • ctags: 46,675
  • sloc: cpp: 124,854; ansic: 110,614; python: 108,664; fortran: 76,260; objc: 424; makefile: 384; sh: 10
file content (203 lines) | stat: -rw-r--r-- 4,331 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#ifndef SMOOTHED_AGGREGATION_H
#define SMOOTHED_AGGREGATION_H

#include <iostream>
#include <vector>
#include <iterator>
#include <assert.h>


//#define DEBUG


template<class T>
void sa_strong_connections(const int n_row,
			   const T epsilon,
			   const int Ap[], const int Aj[], const T Ax[],
			   std::vector<int> * Sp, std::vector<int> * Sj, std::vector<T> * Sx){
  //Sp,Sj form a CSR representation where the i-th row contains
  //the indices of all the strong connections from node i
  Sp->push_back(0);

  //compute diagonal values
  std::vector<T> diags(n_row);
  for(int i = 0; i < n_row; i++){
    int row_start = Ap[i];
    int row_end   = Ap[i+1];
    for(int jj = row_start; jj < row_end; jj++){
      if(Aj[jj] == i){
	diags[i] = Ax[jj];
	break;
      }
    }    
  }

#ifdef DEBUG
  for(int i = 0; i < n_row; i++){ assert(diags[i] > 0); }
#endif
    


  for(int i = 0; i < n_row; i++){
    int row_start = Ap[i];
    int row_end   = Ap[i+1];

    T eps_Aii = epsilon*epsilon*diags[i];

    for(int jj = row_start; jj < row_end; jj++){
      const int&   j = Aj[jj];
      const T&   Aij = Ax[jj];

      if(i == j){continue;}

      if(Aij*Aij >= eps_Aii * diags[j]){
	Sj->push_back(j);
	Sx->push_back(Aij);
      }
    }
    Sp->push_back(Sj->size());
  }
}


void sa_get_aggregates(const int n_row,
		       const int Ap[], const int Aj[],
		       std::vector<int> * Bj){

  std::vector<int> aggregates(n_row,-1);

  int num_aggregates = 0;

  //Pass #1
  for(int i = 0; i < n_row; i++){
    if(aggregates[i] >= 0){ continue; } //already marked

    const int& row_start = Ap[i];
    const int& row_end   = Ap[i+1];
    

    //Determine whether all neighbors of this node are free (not already aggregates)
    bool free_neighborhood = true;
    for(int jj = row_start; jj < row_end; jj++){
      if(aggregates[Aj[jj]] >= 0){
	free_neighborhood = false;
	break;
      }
    }    
    if(!free_neighborhood){ continue; } //bail out


    //Make an aggregate out of this node and its strong neigbors
    aggregates[i] = num_aggregates;
    for(int jj = row_start; jj < row_end; jj++){
      aggregates[Aj[jj]] = num_aggregates;
    }
    num_aggregates++;
  }



  //Pass #2
  std::vector<int> aggregates_copy(aggregates);
  for(int i = 0; i < n_row; i++){
    if(aggregates[i] >= 0){ continue; } //already marked

    const int& row_start = Ap[i];
    const int& row_end   = Ap[i+1];
    
    for(int jj = row_start; jj < row_end; jj++){
      const int& j = Aj[jj];

      if(aggregates_copy[j] >= 0){
	aggregates[i] = aggregates_copy[j];
	break;
      }
    }    
  }



  //Pass #3
  for(int i = 0; i < n_row; i++){
    if(aggregates[i] >= 0){ continue; } //already marked

    const int& row_start = Ap[i];
    const int& row_end   = Ap[i+1];
    
    aggregates[i] = num_aggregates;

    for(int jj = row_start; jj < row_end; jj++){
      const int& j = Aj[jj];

      if(aggregates[j] < 0){ //unmarked neighbors
	aggregates[j] = num_aggregates;
      }
    }  
    num_aggregates++;
  }


#ifdef DEBUG
  for(int i = 0; i < n_row; i++){ assert(aggregates[i] >= 0 && aggregates[i] < num_aggregates); }
#endif
  
  *Bj = aggregates;  
}






template<class T>
void sa_smoother(const int n_row,
		 const T   omega,
		 const int Ap[], const int Aj[], const T Ax[],
		 const int Sp[], const int Sj[], const T Sx[],
		 std::vector<int> * Bp, std::vector<int> * Bj, std::vector<T> * Bx){


  //compute filtered diagonal
  std::vector<T> diags(n_row,0);
  
  for(int i = 0; i < n_row; i++){
    int row_start = Ap[i];
    int row_end   = Ap[i+1];
    for(int jj = row_start; jj < row_end; jj++){
      diags[i] += Ax[jj];
    }    
  }
  for(int i = 0; i < n_row; i++){
    int row_start = Sp[i];
    int row_end   = Sp[i+1];
    for(int jj = row_start; jj < row_end; jj++){
      diags[i] -= Sx[jj];
    }    
  }
  
#ifdef DEBUG
  for(int i = 0; i < n_row; i++){ assert(diags[i] > 0); }
#endif


  //compute omega Jacobi smoother
  Bp->push_back(0);
  for(int i = 0; i < n_row; i++){
    int row_start = Sp[i];
    int row_end   = Sp[i+1];
    const T row_scale = -omega/diags[i];

    Bx->push_back(1.0);
    Bj->push_back( i );
    
    for(int jj = row_start; jj < row_end; jj++){
      Bx->push_back(row_scale*Sx[jj]);
      Bj->push_back(Sj[jj]);
    }    
    Bp->push_back(Bj->size());
  }
}



#endif