1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
__all__ = ['poisson_problem1D','poisson_problem2D',
'ruge_stuben_solver','smoothed_aggregation_solver',
'multilevel_solver']
from numpy.linalg import norm
from numpy import zeros,zeros_like,array
import scipy
import numpy
from coarsen import sa_interpolation,rs_interpolation
from relaxation import gauss_seidel,jacobi
def poisson_problem1D(N):
"""
Return a sparse CSR matrix for the 1d poisson problem
with standard 3-point finite difference stencil on a
grid with N points.
"""
D = 2*numpy.ones(N)
O = -numpy.ones(N)
return scipy.sparse.spdiags([D,O,O],[0,-1,1],N,N).tocsr()
def poisson_problem2D(N):
"""
Return a sparse CSR matrix for the 2d poisson problem
with standard 5-point finite difference stencil on a
square N-by-N grid.
"""
D = 4*numpy.ones(N*N)
T = -numpy.ones(N*N)
O = -numpy.ones(N*N)
T[N-1::N] = 0
return scipy.sparse.spdiags([D,O,T,T,O],[0,-N,-1,1,N],N*N,N*N).tocsr()
def ruge_stuben_solver(A,max_levels=10,max_coarse=500):
"""
Create a multilevel solver using Ruge-Stuben coarsening (Classical AMG)
References:
"Multigrid"
Trottenberg, U., C. W. Oosterlee, and Anton Schuller. San Diego: Academic Press, 2001.
See Appendix A
"""
As = [A]
Ps = []
while len(As) < max_levels and A.shape[0] > max_coarse:
P = rs_interpolation(A)
A = (P.T.tocsr() * A) * P #galerkin operator
As.append(A)
Ps.append(P)
return multilevel_solver(As,Ps)
def smoothed_aggregation_solver(A,max_levels=10,max_coarse=500):
"""
Create a multilevel solver using Smoothed Aggregation (SA)
References:
"Algebraic Multigrid by Smoothed Aggregation for Second and Fourth Order Elliptic Problems",
Petr Vanek and Jan Mandel and Marian Brezina
http://citeseer.ist.psu.edu/vanek96algebraic.html
"""
As = [A]
Ps = []
while len(As) < max_levels and A.shape[0] > max_coarse:
P = sa_interpolation(A,epsilon=0.08*0.5**(len(As)-1))
A = (P.T.tocsr() * A) * P #galerkin operator
As.append(A)
Ps.append(P)
return multilevel_solver(As,Ps)
class multilevel_solver:
def __init__(self,As,Ps):
self.As = As
self.Ps = Ps
def __repr__(self):
output = 'multilevel_solver\n'
output += 'Number of Levels: %d\n' % len(self.As)
output += 'Operator Complexity: %6.3f\n' % self.operator_complexity()
output += 'Grid Complexity: %6.3f\n' % self.grid_complexity()
total_nnz = sum([A.nnz for A in self.As])
for n,A in enumerate(self.As):
output += ' [level %2d] unknowns: %10d nnz: %5.2f%%\n' % (n,A.shape[1],(100*float(A.nnz)/float(total_nnz)))
return output
def operator_complexity(self):
"""number of nonzeros on all levels / number of nonzeros on the finest level"""
return sum([A.nnz for A in self.As])/float(self.As[0].nnz)
def grid_complexity(self):
"""number of unknowns on all levels / number of unknowns on the finest level"""
return sum([A.shape[0] for A in self.As])/float(self.As[0].shape[0])
def solve(self, b, x0=None, tol=1e-5, maxiter=100, callback=None, return_residuals=False):
"""
TODO
"""
if x0 is None:
x = zeros_like(b)
else:
x = array(x0)
#TODO change use of tol (relative tolerance) to agree with other iterative solvers
A = self.As[0]
residuals = [norm(b-A*x,2)]
while len(residuals) <= maxiter and residuals[-1]/residuals[0] > tol:
self.__solve(0,x,b)
residuals.append(scipy.linalg.norm(b-A*x,2))
if callback is not None:
callback(x)
if return_residuals:
return x,residuals
else:
return x
def __solve(self,lvl,x,b):
A = self.As[lvl]
if len(self.As) == 1:
x[:] = scipy.linalg.solve(A.todense(),b)
return x
self.presmoother(A,x,b)
residual = b - A*x
coarse_x = zeros((self.As[lvl+1].shape[0]))
coarse_b = self.Ps[lvl].T * residual
if lvl == len(self.As) - 2:
#direct solver on coarsest level
coarse_x[:] = scipy.linalg.solve(self.As[-1].todense(),coarse_b)
else:
self.__solve(lvl+1,coarse_x,coarse_b)
x += self.Ps[lvl] * coarse_x #coarse grid correction
self.postsmoother(A,x,b)
def presmoother(self,A,x,b):
gauss_seidel(A,x,b,iterations=1,sweep="forward")
def postsmoother(self,A,x,b):
gauss_seidel(A,x,b,iterations=1,sweep="backward")
if __name__ == '__main__':
from scipy import *
A = poisson_problem2D(200)
ml = smoothed_aggregation_solver(A)
#ml = ruge_stuben_solver(A)
x = rand(A.shape[0])
b = zeros_like(x)
resid = []
for n in range(10):
x = ml.solve(b,x,maxiter=1)
resid.append(linalg.norm(A*x))
|