File: interpreter.c

package info (click to toggle)
python-scipy 0.6.0-12
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 32,016 kB
  • ctags: 46,675
  • sloc: cpp: 124,854; ansic: 110,614; python: 108,664; fortran: 76,260; objc: 424; makefile: 384; sh: 10
file content (1431 lines) | stat: -rw-r--r-- 44,349 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
#include "Python.h"
#include "structmember.h"
#include "numpy/noprefix.h"
#include "math.h"

#include "complex_functions.inc"

#ifdef _WIN32
#define inline __inline
#endif

#define BLOCK_SIZE1 128
#define BLOCK_SIZE2 8

/* This file and interp_body should really be generated from a description of
   the opcodes -- there's too much repetition here for manually editing */


enum OpCodes {
    OP_NOOP = 0,

    OP_COPY_BB,

    OP_INVERT_BB,
    OP_AND_BBB,
    OP_OR_BBB,

    OP_GT_BII,
    OP_GE_BII,
    OP_EQ_BII,
    OP_NE_BII,

    OP_GT_BFF,
    OP_GE_BFF,
    OP_EQ_BFF,
    OP_NE_BFF,

    OP_CAST_IB,
    OP_COPY_II,
    OP_ONES_LIKE_II,
    OP_NEG_II,
    OP_ADD_III,
    OP_SUB_III,
    OP_MUL_III,
    OP_DIV_III,
    OP_POW_III,
    OP_MOD_III,
    OP_WHERE_IFII,

    OP_CAST_FB,
    OP_CAST_FI,
    OP_COPY_FF,
    OP_ONES_LIKE_FF,
    OP_NEG_FF,
    OP_ADD_FFF,
    OP_SUB_FFF,
    OP_MUL_FFF,
    OP_DIV_FFF,
    OP_POW_FFF,
    OP_MOD_FFF,
    OP_SIN_FF,
    OP_COS_FF,
    OP_TAN_FF,
    OP_SQRT_FF,
    OP_ARCTAN2_FFF,
    OP_WHERE_FFFF,
    OP_FUNC_FF,
    OP_FUNC_FFF,

    OP_EQ_BCC,
    OP_NE_BCC,

    OP_CAST_CB,
    OP_CAST_CI,
    OP_CAST_CF,
    OP_ONES_LIKE_CC,
    OP_COPY_CC,
    OP_NEG_CC,
    OP_ADD_CCC,
    OP_SUB_CCC,
    OP_MUL_CCC,
    OP_DIV_CCC,
    OP_WHERE_CFCC,
    OP_FUNC_CC,
    OP_FUNC_CCC,

    OP_REAL_FC,
    OP_IMAG_FC,
    OP_COMPLEX_CFF,

    OP_REDUCTION,

    OP_SUM,
    OP_SUM_IIN,
    OP_SUM_FFN,
    OP_SUM_CCN,

    OP_PROD,
    OP_PROD_IIN,
    OP_PROD_FFN,
    OP_PROD_CCN

};

/* returns the sig of the nth op, '\0' if no more ops -1 on failure */
static int
op_signature(int op, int n) {
    switch (op) {
        case OP_NOOP:
            break;
        case OP_COPY_BB:
            if (n == 0 || n == 1) return 'b';
            break;
        case OP_INVERT_BB:
            if (n == 0 || n == 1) return 'b';
            break;
        case OP_AND_BBB:
        case OP_OR_BBB:
            if (n == 0 || n == 1 || n == 2) return 'b';
            break;
        case OP_GT_BII:
        case OP_GE_BII:
        case OP_EQ_BII:
        case OP_NE_BII:
            if (n == 0) return 'b';
            if (n == 1 || n == 2) return 'i';
            break;
        case OP_GT_BFF:
        case OP_GE_BFF:
        case OP_EQ_BFF:
        case OP_NE_BFF:
            if (n == 0) return 'b';
            if (n == 1 || n == 2) return 'f';
            break;
        case OP_CAST_IB:
            if (n == 0) return 'i';
            if (n == 1) return 'b';
            break;
        case OP_COPY_II:
        case OP_ONES_LIKE_II:
        case OP_NEG_II:
            if (n == 0 || n == 1) return 'i';
            break;
        case OP_ADD_III:
        case OP_SUB_III:
        case OP_MUL_III:
        case OP_DIV_III:
        case OP_MOD_III:
        case OP_POW_III:
            if (n == 0 || n == 1 || n == 2) return 'i';
            break;
        case OP_WHERE_IFII:
            if (n == 0 || n == 2 || n == 3) return 'i';
            if (n == 1) return 'f';
            break;
        case OP_CAST_FB:
            if (n == 0) return 'f';
            if (n == 1) return 'b';
            break;
        case OP_CAST_FI:
            if (n == 0) return 'f';
            if (n == 1) return 'i';
            break;
        case OP_COPY_FF:
        case OP_ONES_LIKE_FF:
        case OP_NEG_FF:
        case OP_SIN_FF:
        case OP_COS_FF:
        case OP_TAN_FF:
        case OP_SQRT_FF:
            if (n == 0 || n == 1) return 'f';
            break;
        case OP_ADD_FFF:
        case OP_SUB_FFF:
        case OP_MUL_FFF:
        case OP_DIV_FFF:
        case OP_POW_FFF:
        case OP_MOD_FFF:
        case OP_ARCTAN2_FFF:
            if (n == 0 || n == 1 || n == 2) return 'f';
            break;
        case OP_WHERE_FFFF:
            if (n == 0 || n == 1 || n == 2 || n == 3) return 'f';
            break;
        case OP_FUNC_FF:
            if (n == 0 || n == 1) return 'f';
            if (n == 2) return 'n';
            break;
        case OP_FUNC_FFF:
            if (n == 0 || n == 1 || n == 2) return 'f';
            if (n == 3) return 'n';
            break;
        case OP_EQ_BCC:
        case OP_NE_BCC:
            if (n == 0) return 'b';
            if (n == 1 || n == 2) return 'c';
            break;
        case OP_CAST_CB:
            if (n == 0) return 'c';
            if (n == 1) return 'b';
            break;
        case OP_CAST_CI:
            if (n == 0) return 'c';
            if (n == 1) return 'i';
            break;
        case OP_CAST_CF:
            if (n == 0) return 'c';
            if (n == 1) return 'f';
            break;
        case OP_COPY_CC:
        case OP_ONES_LIKE_CC:
        case OP_NEG_CC:
            if (n == 0 || n == 1) return 'c';
            break;
        case OP_ADD_CCC:
        case OP_SUB_CCC:
        case OP_MUL_CCC:
        case OP_DIV_CCC:
            if (n == 0 || n == 1 || n == 2) return 'c';
            break;
        case OP_WHERE_CFCC:
            if (n == 0 || n == 2 || n == 3) return 'c';
            if (n == 1) return 'f';
            break;
        case OP_FUNC_CC:
            if (n == 0 || n == 1) return 'c';
            if (n == 2) return 'n';
            break;
        case OP_FUNC_CCC:
            if (n == 0 || n == 1 || n == 2) return 'c';
            if (n == 3) return 'n';
            break;
        case OP_REAL_FC:
        case OP_IMAG_FC:
            if (n == 0) return 'f';
            if (n == 1) return 'c';
            break;
        case OP_COMPLEX_CFF:
            if (n == 0) return 'c';
            if (n == 1 || n == 2) return 'f';
            break;
        case OP_PROD_IIN:
        case OP_SUM_IIN:
            if (n == 0 || n == 1) return 'i';
            if (n == 2) return 'n';
            break;
        case OP_PROD_FFN:
        case OP_SUM_FFN:
            if (n == 0 || n == 1) return 'f';
            if (n == 2) return 'n';
            break;
        case OP_PROD_CCN:
        case OP_SUM_CCN:
            if (n == 0 || n == 1) return 'c';
            if (n == 2) return 'n';
            break;
        default:
            return -1;
            break;
    }
    return 0;
}



/*
   Lots of functions still to be added: exp, ln, log10, etc, etc. Still not
   sure which get there own opcodes and which get relegated to loopup table.
   Some functions at least (sin and arctan2 for instance) seem to have a large
   slowdown when run through lookup table. Not entirely sure why.

   To add a function to the lookup table, add to FUNC_CODES (first
   group is 1-arg functions, second is 2-arg functions), also to
   functions_f or functions_ff as appropriate. Finally, use add_func
   down below to add to funccodes. Functions with more arguments
   aren't implemented at present, but should be easy; just copy the 1-
   or 2-arg case.

   To add a function opcode, just copy OP_SIN or OP_ARCTAN2.

   Some functions are repeated in this table that are opcodes, but there's
   no problem with that as the compiler selects opcodes over functions,
   and this makes it easier to compare opcode vs. function speeds.
*/

enum FuncFFCodes {
    FUNC_SQRT_FF = 0,
    FUNC_SIN_FF,
    FUNC_COS_FF,
    FUNC_TAN_FF,
    FUNC_ARCSIN_FF,
    FUNC_ARCCOS_FF,
    FUNC_ARCTAN_FF,
    FUNC_SINH_FF,
    FUNC_COSH_FF,
    FUNC_TANH_FF,

    FUNC_FF_LAST
};

typedef double (*FuncFFPtr)(double);

/* The order of this array must match the FuncFFCodes enum above */
FuncFFPtr functions_f[] = {
    sqrt,
    sin,
    cos,
    tan,
    asin,
    acos,
    atan,
    sinh,
    cosh,
    tanh,
};

enum FuncFFFCodes {
    FUNC_FMOD_FFF = 0,

    FUNC_FFF_LAST
};

typedef double (*FuncFFFPtr)(double, double);

FuncFFFPtr functions_ff[] = {
    fmod,
};

enum FuncCCCodes {
    FUNC_SQRT_CC = 0,
    FUNC_SIN_CC,
    FUNC_COS_CC,
    FUNC_TAN_CC,
    FUNC_ARCSIN_CC,
    FUNC_ARCCOS_CC,
    FUNC_ARCTAN_CC,
    FUNC_SINH_CC,
    FUNC_COSH_CC,
    FUNC_TANH_CC,

    FUNC_CC_LAST
};


typedef void (*FuncCCPtr)(cdouble*, cdouble*);

/* The order of this array must match the FuncCCCodes enum above */
FuncCCPtr functions_cc[] = {
    nc_sqrt,
    nc_sin,
    nc_cos,
    nc_tan,
    nc_asin,
    nc_acos,
    nc_atan,
    nc_sinh,
    nc_cosh,
    nc_tanh,
};

enum FuncCCCCodes {
    FUNC_POW_CCC = 0,

    FUNC_CCC_LAST
};

typedef void (*FuncCCCPtr)(cdouble*, cdouble*, cdouble*);

FuncCCCPtr functions_ccc[] = {
    nc_pow,
};

typedef struct
{
    PyObject_HEAD
    PyObject *signature;    /* a python string */
    PyObject *tempsig;
    PyObject *constsig;
    PyObject *fullsig;
    PyObject *program;      /* a python string */
    PyObject *constants;    /* a tuple of int/float/complex */
    PyObject *input_names;  /* tuple of strings */
    char **mem;             /* pointers to registers */
    char *rawmem;           /* a chunks of raw memory for storing registers */
    intp *memsteps;
    int  rawmemsize;
} NumExprObject;

static void
NumExpr_dealloc(NumExprObject *self)
{
    Py_XDECREF(self->signature);
    Py_XDECREF(self->tempsig);
    Py_XDECREF(self->constsig);
    Py_XDECREF(self->fullsig);
    Py_XDECREF(self->program);
    Py_XDECREF(self->constants);
    Py_XDECREF(self->input_names);
    PyMem_Del(self->mem);
    PyMem_Del(self->rawmem);
    PyMem_Del(self->memsteps);
    self->ob_type->tp_free((PyObject*)self);
}

static PyObject *
NumExpr_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
    NumExprObject *self = (NumExprObject *)type->tp_alloc(type, 0);
    if (self != NULL) {
#define INIT_WITH(name, object) \
        self->name = object; \
        if (!self->name) { \
            Py_DECREF(self); \
            return NULL; \
        }

        INIT_WITH(signature, PyString_FromString(""));
        INIT_WITH(tempsig, PyString_FromString(""));
        INIT_WITH(constsig, PyString_FromString(""));
        INIT_WITH(fullsig, PyString_FromString(""));
        INIT_WITH(program, PyString_FromString(""));
        INIT_WITH(constants, PyTuple_New(0));
        Py_INCREF(Py_None);
        self->input_names = Py_None;
        self->mem = NULL;
        self->rawmem = NULL;
        self->memsteps = NULL;
        self->rawmemsize = 0;
#undef INIT_WITH
    }
    return (PyObject *)self;
}

static char
get_return_sig(PyObject* program) {
    int sig;
    char last_opcode;
    int end = PyString_Size(program);
    do {
        end -= 4;
        if (end < 0) return 'X';
    }
    while ((last_opcode = PyString_AS_STRING(program)[end]) == OP_NOOP);
    sig = op_signature(last_opcode, 0);
    if (sig <= 0) {
        return 'X';
    } else {
        return (char)sig;
    }
}

static int
size_from_char(char c)
{
    switch (c) {
        case 'b': return sizeof(char);
        case 'i': return sizeof(long);
        case 'f': return sizeof(double);
        case 'c': return 2*sizeof(double);
        default:
            PyErr_SetString(PyExc_TypeError, "signature value not in 'bifc'");
            return -1;
    }
}

static int
size_from_sig(PyObject *o)
{
    intp size = 0;
    char *s = PyString_AsString(o);
    if (!s) return -1;
    for (; *s != '\0'; s++) {
        int x = size_from_char(*s);
        if (x == -1) return -1;
        size += x;
    }
    return size;
}

static int
typecode_from_char(char c)
{
    switch (c) {
        case 'b': return PyArray_BOOL;
        case 'i': return PyArray_LONG;
        case 'f': return PyArray_DOUBLE;
        case 'c': return PyArray_CDOUBLE;
        default:
            PyErr_SetString(PyExc_TypeError, "signature value not in 'ifc'");
            return -1;
    }
}

static int
last_opcode(PyObject *program_object) {
    Py_ssize_t n;
    unsigned char *program;
    PyString_AsStringAndSize(program_object, (char **)&program, &n);
    return program[n-4];

}

static int
get_reduction_axis(PyObject* program) {
    char last_opcode, sig;
    int end = PyString_Size(program);
    int axis = ((unsigned char *)PyString_AS_STRING(program))[end-1];
    if (axis != 255 && axis >= MAX_DIMS)
        axis = MAX_DIMS - axis;
    return axis;
}



static int
check_program(NumExprObject *self)
{
    unsigned char *program;
    Py_ssize_t prog_len, n_buffers, n_inputs;
    int rno, pc, arg, argloc, argno, sig;
    char *fullsig, *signature;

    if (PyString_AsStringAndSize(self->program, (char **)&program,
                                 &prog_len) < 0) {
        PyErr_Format(PyExc_RuntimeError, "invalid program: can't read program");
        return -1;
    }
    if (prog_len % 4 != 0) {
        PyErr_Format(PyExc_RuntimeError, "invalid program: prog_len mod 4 != 0");
        return -1;
    }
    if (PyString_AsStringAndSize(self->fullsig, (char **)&fullsig,
                                 &n_buffers) < 0) {
        PyErr_Format(PyExc_RuntimeError, "invalid program: can't read fullsig");
        return -1;
    }
    if (PyString_AsStringAndSize(self->signature, (char **)&signature,
                                 &n_inputs) < 0) {
        PyErr_Format(PyExc_RuntimeError, "invalid program: can't read signature");
        return -1;
    }
    if (n_buffers > 255) {
        PyErr_Format(PyExc_RuntimeError, "invalid program: too many buffers");
        return -1;
    }
    for (rno = n_inputs+1; rno < n_buffers; rno++) {
        char *bufend = self->mem[rno] + BLOCK_SIZE1 * size_from_char(fullsig[rno]);
        if ( (bufend - self->rawmem) > self->rawmemsize) {
            PyErr_Format(PyExc_RuntimeError, "invalid program: too many buffers");
            return -1;
        }
    }
    for (pc = 0; pc < prog_len; pc += 4) {
        unsigned int op = program[pc];
        if (op == OP_NOOP) {
            continue;
        }
        if ((op >= OP_REDUCTION) && pc != prog_len-4) {
                PyErr_Format(PyExc_RuntimeError,
                    "invalid program: reduction operations must occur last");
                return -1;
        }
        for (argno = 0; ; argno++) {
            sig = op_signature(op, argno);
            if (sig == -1) {
                PyErr_Format(PyExc_RuntimeError, "invalid program: illegal opcode at %i (%c)", pc, op);
                return -1;
            }
            if (sig == 0) break;
            if (argno < 3) {
                argloc = pc+argno+1;
            }
            if (argno >= 3) {
                if (pc + 1 >= prog_len) {
                    PyErr_Format(PyExc_RuntimeError, "invalid program: double opcode (%c) at end (%i)", pc, sig);
                    return -1;
                }
                argloc = pc+argno+2;
            }
            arg = program[argloc];

            if (sig != 'n' && (arg >= n_buffers) || (arg < 0)) {
                PyErr_Format(PyExc_RuntimeError, "invalid program: buffer out of range (%i) at %i", arg, argloc);
                return -1;
            }
            if (sig == 'n') {
                if (op == OP_FUNC_FF) {
                    if (arg < 0 || arg >= FUNC_FF_LAST) {
                        PyErr_Format(PyExc_RuntimeError, "invalid program: funccode out of range (%i) at %i", arg, argloc);
                        return -1;
                    }
                } else if (op == OP_FUNC_FFF) {
                    if (arg < 0 || arg >= FUNC_FFF_LAST) {
                        PyErr_Format(PyExc_RuntimeError, "invalid program: funccode out of range (%i) at %i", arg, argloc);
                        return -1;
                    }
                } else if (op == OP_FUNC_CC) {
                    if (arg < 0 || arg >= FUNC_CC_LAST) {
                        PyErr_Format(PyExc_RuntimeError, "invalid program: funccode out of range (%i) at %i", arg, argloc);
                        return -1;
                    }
                } else if (op == OP_FUNC_CCC) {
                    if (arg < 0 || arg >= FUNC_CCC_LAST) {
                        PyErr_Format(PyExc_RuntimeError, "invalid program: funccode out of range (%i) at %i", arg, argloc);
                        return -1;
                    }
                } else if (op >= OP_REDUCTION) {
                    ;
                } else {
                    PyErr_Format(PyExc_RuntimeError, "invalid program: internal checker errror processing %i", argloc);
                    return -1;
                }
            } else if (sig != fullsig[arg]) {
                PyErr_Format(PyExc_RuntimeError,
                "invalid : opcode signature doesn't match buffer (%c vs %c) at %i", sig, fullsig[arg], argloc);
                return -1;
            }
        }
    }
    return 0;
}



static int
NumExpr_init(NumExprObject *self, PyObject *args, PyObject *kwds)
{
    int i, j, mem_offset;
    int n_constants, n_inputs, n_temps;
    PyObject *signature = NULL, *tempsig = NULL, *constsig = NULL;
    PyObject *fullsig = NULL, *program = NULL, *constants = NULL;
    PyObject *input_names = NULL, *o_constants = NULL;
    char **mem = NULL, *rawmem = NULL;
    intp *memsteps;
    int rawmemsize;
    static char *kwlist[] = {"signature", "tempsig",
                             "program",  "constants",
                             "input_names", NULL};

    if (!PyArg_ParseTupleAndKeywords(args, kwds, "SSS|OO", kwlist,
                                     &signature,
                                     &tempsig,
                                     &program, &o_constants,
                                     &input_names)) {
        return -1;
    }

    n_inputs = PyString_Size(signature);
    n_temps = PyString_Size(tempsig);

    if (o_constants) {
        if (!PySequence_Check(o_constants) ) {
                PyErr_SetString(PyExc_TypeError, "constants must be a sequence");
                return -1;
        }
        n_constants = PySequence_Length(o_constants);
        if (!(constants = PyTuple_New(n_constants)))
            return -1;
        if (!(constsig = PyString_FromStringAndSize(NULL, n_constants))) {
            Py_DECREF(constants);
            return -1;
        }
        for (i = 0; i < n_constants; i++) {
            PyObject *o;
            if (!(o = PySequence_GetItem(o_constants, i))) { /* new reference */
                Py_DECREF(constants);
                Py_DECREF(constsig);
                return -1;
            }
            PyTuple_SET_ITEM(constants, i, o); /* steals reference */
            if (PyBool_Check(o)) {
                PyString_AS_STRING(constsig)[i] = 'b';
                continue;
            }
            if (PyInt_Check(o)) {
                PyString_AS_STRING(constsig)[i] = 'i';
                continue;
            }
            if (PyFloat_Check(o)) {
                PyString_AS_STRING(constsig)[i] = 'f';
                continue;
            }
            if (PyComplex_Check(o)) {
                PyString_AS_STRING(constsig)[i] = 'c';
                continue;
            }
            PyErr_SetString(PyExc_TypeError, "constants must be of type int/float/complex");
            Py_DECREF(constsig);
            Py_DECREF(constants);
            return -1;
        }
    } else {
        n_constants = 0;
        if (!(constants = PyTuple_New(0)))
            return -1;
        if (!(constsig = PyString_FromString(""))) {
            Py_DECREF(constants);
            return -1;
        }
    }

    fullsig = PyString_FromFormat("%c%s%s%s", get_return_sig(program),
        PyString_AS_STRING(signature), PyString_AS_STRING(constsig),
        PyString_AS_STRING(tempsig));
    if (!fullsig) {
        Py_DECREF(constants);
        Py_DECREF(constsig);
    }

    if (!input_names) {
        input_names = Py_None;
    }

    rawmemsize = BLOCK_SIZE1 * (size_from_sig(constsig) + size_from_sig(tempsig));
    mem = PyMem_New(char *, 1 + n_inputs + n_constants + n_temps);
    rawmem = PyMem_New(char, rawmemsize);
    memsteps = PyMem_New(int, 1 + n_inputs + n_constants + n_temps);
    if (!mem || !rawmem || !memsteps) {
        Py_DECREF(constants);
        Py_DECREF(constsig);
        Py_DECREF(fullsig);
        PyMem_Del(mem);
        PyMem_Del(rawmem);
        PyMem_Del(memsteps);
        return -1;
    }
    /*
       0                                                  -> output
       [1, n_inputs+1)                                    -> inputs
       [n_inputs+1, n_inputs+n_consts+1)                  -> constants
       [n_inputs+n_consts+1, n_inputs+n_consts+n_temps+1) -> temps
    */
    /* Fill in 'mem' and 'rawmem' for constants */
    mem_offset = 0;
    for (i = 0; i < n_constants; i++) {
        char c = PyString_AS_STRING(constsig)[i];
        int size = size_from_char(c);
        mem[i+n_inputs+1] = rawmem + mem_offset;
        mem_offset += BLOCK_SIZE1 * size;
        memsteps[i+n_inputs+1] = size;
        /* fill in the constants */
        if (c == 'b') {
            char *bmem = (char*)mem[i+n_inputs+1];
            char value = (char)PyInt_AS_LONG(PyTuple_GET_ITEM(constants, i));
            for (j = 0; j < BLOCK_SIZE1; j++) {
                bmem[j] = value;
            }
        } else if (c == 'i') {
            long *imem = (long*)mem[i+n_inputs+1];
            long value = PyInt_AS_LONG(PyTuple_GET_ITEM(constants, i));
            for (j = 0; j < BLOCK_SIZE1; j++) {
                imem[j] = value;
            }
        } else if (c == 'f') {
            double *dmem = (double*)mem[i+n_inputs+1];
            double value = PyFloat_AS_DOUBLE(PyTuple_GET_ITEM(constants, i));
            for (j = 0; j < BLOCK_SIZE1; j++) {
                dmem[j] = value;
            }
        } else if (c == 'c') {
            double *cmem = (double*)mem[i+n_inputs+1];
            Py_complex value = PyComplex_AsCComplex(PyTuple_GET_ITEM(constants, i));
            for (j = 0; j < 2*BLOCK_SIZE1; j+=2) {
                cmem[j] = value.real;
                cmem[j+1] = value.imag;
            }
        }
    }
    /* Fill in 'mem' for temps */
    for (i = 0; i < n_temps; i++) {
        int size = size_from_char(PyString_AS_STRING(tempsig)[i]);
        mem[i+n_inputs+n_constants+1] = rawmem + mem_offset;
        mem_offset += BLOCK_SIZE1 * size;
        memsteps[i+n_inputs+n_constants+1] = size;
    }
    /* See if any errors occured (e.g., in size_from_char) or if mem_offset is wrong */
    if (PyErr_Occurred() || mem_offset != rawmemsize) {
        if (mem_offset != rawmemsize) {
            PyErr_Format(PyExc_RuntimeError, "mem_offset does not match rawmemsize");
        }
        Py_DECREF(constants);
        Py_DECREF(constsig);
        Py_DECREF(fullsig);
        PyMem_Del(mem);
        PyMem_Del(rawmem);
        PyMem_Del(memsteps);
        return -1;
    }


    #define REPLACE_OBJ(arg) \
    {PyObject *tmp = self->arg; \
     self->arg = arg; \
     Py_XDECREF(tmp);}
    #define INCREF_REPLACE_OBJ(arg) {Py_INCREF(arg); REPLACE_OBJ(arg);}
    #define REPLACE_MEM(arg) {PyMem_Del(self->arg); self->arg=arg;}

    INCREF_REPLACE_OBJ(signature);
    INCREF_REPLACE_OBJ(tempsig);
    REPLACE_OBJ(constsig);
    REPLACE_OBJ(fullsig);
    INCREF_REPLACE_OBJ(program);
    REPLACE_OBJ(constants);
    INCREF_REPLACE_OBJ(input_names);
    REPLACE_MEM(mem);
    REPLACE_MEM(rawmem);
    REPLACE_MEM(memsteps);
    self->rawmemsize = rawmemsize;

    #undef REPLACE_OBJ
    #undef INCREF_REPLACE_OBJ
    #undef REPLACE_MEM

    return check_program(self);
}

static PyMemberDef NumExpr_members[] = {
    {"signature", T_OBJECT_EX, offsetof(NumExprObject, signature), READONLY, NULL},
    {"constsig", T_OBJECT_EX, offsetof(NumExprObject, constsig), READONLY, NULL},
    {"tempsig", T_OBJECT_EX, offsetof(NumExprObject, tempsig), READONLY, NULL},
    {"fullsig", T_OBJECT_EX, offsetof(NumExprObject, fullsig), READONLY, NULL},

    {"program", T_OBJECT_EX, offsetof(NumExprObject, program), READONLY, NULL},
    {"constants", T_OBJECT_EX, offsetof(NumExprObject, constants),
     READONLY, NULL},
    {"input_names", T_OBJECT, offsetof(NumExprObject, input_names), 0, NULL},
    {NULL},
};


struct index_data {
    int count;
    int size;
    int findex;
    int *shape;
    int *strides;
    int *index;
    char *buffer;
};

struct vm_params {
    int prog_len;
    unsigned char *program;
    unsigned int n_inputs;
    unsigned int r_end;
    char *output;
    char **inputs;
    char **mem;
    intp *memsteps;
    struct index_data *index_data;
};

static inline unsigned int
flat_index(struct index_data *id, unsigned int j) {
    int i, k = id->count - 1;
    unsigned int findex = id->findex;
    if (k < 0) return 0;
    if (findex == -1) {
        findex = 0;
        for (i = 0; i < id->count; i++)
            findex += id->strides[i] * id->index[i];
    }
    id->index[k] += 1;
    if (id->index[k] >= id->shape[k]) {
        while (id->index[k] >= id->shape[k]) {
            id->index[k] -= id->shape[k];
            if (k < 1) break;
            id->index[--k] += 1;
        }
        id->findex = -1;
    } else {
        id->findex = findex + id->strides[k];
    }
    return findex;
}


#define DO_BOUNDS_CHECK 1

#if DO_BOUNDS_CHECK
#define BOUNDS_CHECK(arg) if ((arg) >= params.r_end) { \
        *pc_error = pc;                                                 \
        return -2;                                                      \
    }
#else
#define BOUNDS_CHECK(arg)
#endif

static inline int
vm_engine_1(int start, int blen, struct vm_params params, int *pc_error)
{
    unsigned int index;
    for (index = start; index < blen; index += BLOCK_SIZE1) {
#define VECTOR_SIZE BLOCK_SIZE1
#include "interp_body.c"
#undef VECTOR_SIZE
    }
    return 0;
}

static inline int
vm_engine_2(int start, int blen, struct vm_params params, int *pc_error)
{
    unsigned int index;
    for (index = start; index < blen; index += BLOCK_SIZE2) {
#define VECTOR_SIZE BLOCK_SIZE2
#include "interp_body.c"
#undef VECTOR_SIZE
    }
    return 0;
}

static inline int
vm_engine_rest(int start, int blen, struct vm_params params, int *pc_error)
{
    unsigned int index = start;
    unsigned int rest = blen - start;
#define VECTOR_SIZE rest
#include "interp_body.c"
#undef VECTOR_SIZE
    return 0;
}

static int
run_interpreter(NumExprObject *self, int len, char *output, char **inputs,
                struct index_data *index_data, int *pc_error)
{
    int r;
    Py_ssize_t plen;
    unsigned int blen1, blen2;
    struct vm_params params;

    *pc_error = -1;
    if (PyString_AsStringAndSize(self->program, (char **)&(params.program),
                                 &plen) < 0) {
        return -1;
    }
    params.prog_len = plen;
    if ((params.n_inputs = PyObject_Length(self->signature)) == -1)
        return -1;
    params.output = output;
    params.inputs = inputs;
    params.index_data = index_data;
    params.mem = self->mem;
    params.memsteps = self->memsteps;
    params.r_end = PyString_Size(self->fullsig);
    blen1 = len - len % BLOCK_SIZE1;
    r = vm_engine_1(0, blen1, params, pc_error);
    if (r < 0) return r;
    if (len != blen1) {
        blen2 = len - len % BLOCK_SIZE2;
        r = vm_engine_2(blen1, blen2, params, pc_error);
        if (r < 0) return r;
        if (len != blen2) {
            r = vm_engine_rest(blen2, len, params, pc_error);
            if (r < 0) return r;
        }
    }
    return 0;
}

/* keyword arguments are ignored! */
static PyObject *
NumExpr_run(NumExprObject *self, PyObject *args, PyObject *kwds)
{
    PyObject *output = NULL, *a_inputs = NULL;
    struct index_data *inddata = NULL;
    unsigned int n_inputs, n_dimensions = 0;
    int shape[MAX_DIMS];
    int i, j, size, r, pc_error;
    char **inputs = NULL;
    intp strides[MAX_DIMS]; /* clean up XXX */

    n_inputs = PyTuple_Size(args);
    if (PyString_Size(self->signature) != n_inputs) {
        return PyErr_Format(PyExc_ValueError,
                            "number of inputs doesn't match program");
    }
    if (kwds && PyObject_Length(kwds) > 0) {
        return PyErr_Format(PyExc_ValueError,
                            "keyword arguments are not accepted");
    }

    /* This is overkill - we shouldn't need to allocate all of this space,
       but this makes it easier figure out */
    a_inputs = PyTuple_New(3*n_inputs);
    if (!a_inputs) goto cleanup_and_exit;

    inputs = PyMem_New(char *, n_inputs);
    if (!inputs) goto cleanup_and_exit;

    inddata = PyMem_New(struct index_data, n_inputs+1);
    if (!inddata) goto cleanup_and_exit;
    for (i = 0; i < n_inputs+1; i++)
        inddata[i].count = 0;

    /* First, make sure everything is some sort of array so that we can work
       with their shapes. Count dimensions concurrently. */

    for (i = 0; i < n_inputs; i++) {
        PyObject *o = PyTuple_GET_ITEM(args, i); /* borrowed ref */
        PyObject *a;
        char c = PyString_AS_STRING(self->signature)[i];
        int typecode = typecode_from_char(c);
        if (typecode == -1) goto cleanup_and_exit;
        /* Convert it just in case of a non-swapped array */
        a = PyArray_FROM_OTF(o, typecode, NOTSWAPPED);
        if (!a) goto cleanup_and_exit;
        PyTuple_SET_ITEM(a_inputs, i, a);  /* steals reference */
        if (PyArray_NDIM(a) > n_dimensions)
            n_dimensions = PyArray_NDIM(a);
    }

    /* Broadcast all of the inputs to determine the output shape (this will
       require some modifications if we later allow a final reduction
       operation). If an array has too few dimensions it's shape is padded
       with ones fromthe left. All array dimensions must match, or be one. */

    for (i = 0; i < n_dimensions; i++)
        shape[i] = 1;
    for (i = 0; i < n_inputs; i++) {
        PyObject *a = PyTuple_GET_ITEM(a_inputs, i);
        unsigned int ndims = PyArray_NDIM(a);
        int delta = n_dimensions - ndims;
        for (j = 0; j < ndims; j++) {
            unsigned int n = PyArray_DIM(a, j);
            if (n == 1 || n == shape[delta+j]) continue;
            if (shape[delta+j] == 1)
                shape[delta+j] = n;
            else {
                PyErr_SetString(PyExc_ValueError,
                                "cannot broadcast inputs to common shape");
                goto cleanup_and_exit;
            }
        }
    }
    size = PyArray_MultiplyList(shape, n_dimensions);

    /* Broadcast indices of all of the arrays. We could improve efficiency
       by keeping track of what needs to be broadcast above */

    for (i = 0; i < n_inputs; i++) {
        PyObject *a = PyTuple_GET_ITEM(a_inputs, i);
        PyObject *b;
        int strides[MAX_DIMS];
        int delta = n_dimensions - PyArray_NDIM(a);
        if (PyArray_NDIM(a)) {
            for (j = 0; j < n_dimensions; j++)
                strides[j] = (j < delta || PyArray_DIM(a, j-delta) == 1) ?
                                0 : PyArray_STRIDE(a, j-delta);
            Py_INCREF(PyArray_DESCR(a));
            b = PyArray_NewFromDescr(a->ob_type,
                                       PyArray_DESCR(a),
                                       n_dimensions, shape,
                                       strides, PyArray_DATA(a), 0, a);
            if (!b) goto cleanup_and_exit;
        } else { /* Leave scalars alone */
            b = a;
            Py_INCREF(b);
        }
        /* Store b so that it stays alive till we're done */
        PyTuple_SET_ITEM(a_inputs, i+n_inputs, b);
    }


    for (i = 0; i < n_inputs; i++) {
        PyObject *a = PyTuple_GET_ITEM(a_inputs, i+n_inputs);
        PyObject *b;
        char c = PyString_AS_STRING(self->signature)[i];
        int typecode = typecode_from_char(c);
        if (PyArray_NDIM(a) == 0) {
            /* Broadcast scalars */
            intp dims[1] = {BLOCK_SIZE1};
            b = PyArray_SimpleNew(1, dims, typecode);
            if (!b) goto cleanup_and_exit;
            self->memsteps[i+1] = 0;
            PyTuple_SET_ITEM(a_inputs, i+2*n_inputs, b);  /* steals reference */
            inputs[i] = PyArray_DATA(b);
            if (typecode == PyArray_LONG) {
                long value = ((long*)PyArray_DATA(a))[0];
                for (j = 0; j < BLOCK_SIZE1; j++)
                    ((long*)PyArray_DATA(b))[j] = value;
            } else if (typecode == PyArray_DOUBLE) {
                double value = ((double*)PyArray_DATA(a))[0];
                for (j = 0; j < BLOCK_SIZE1; j++)
                    ((double*)PyArray_DATA(b))[j] = value;
            } else if (typecode == PyArray_CDOUBLE) {
                double rvalue = ((double*)PyArray_DATA(a))[0];
                double ivalue = ((double*)PyArray_DATA(a))[1];
                for (j = 0; j < 2*BLOCK_SIZE1; j+=2) {
                    ((double*)PyArray_DATA(b))[j] = rvalue;
                    ((double*)PyArray_DATA(b))[j+1] = ivalue;
                }
            } else {
                PyErr_SetString(PyExc_RuntimeError, "illegal typecode value");
                goto cleanup_and_exit;
            }
        } else {
            PyObject *origA = a;
            int inner_size = -1;
            /* Check array is contiguous */
            for (j = PyArray_NDIM(a)-1; j >= 0; j--) {
                if ((inner_size == -1 && PyArray_STRIDE(a, j) % PyArray_ITEMSIZE(a)) ||
                    (inner_size != -1 && PyArray_STRIDE(a, j) != inner_size)) {
                    intp dims[1] = {BLOCK_SIZE1};
                    inddata[i+1].count = PyArray_NDIM(a);
                    inddata[i+1].findex = -1;
                    inddata[i+1].size = PyArray_ITEMSIZE(a);
                    inddata[i+1].shape = PyArray_DIMS(a);
                    inddata[i+1].strides = PyArray_STRIDES(a);
                    inddata[i+1].buffer = PyArray_BYTES(a);
                    inddata[i+1].index = PyMem_New(int, inddata[i+1].count);
                    for (j = 0; j < inddata[i+1].count; j++)
                        inddata[i+1].index[j] = 0;
                    a = PyArray_SimpleNew(1, dims, typecode);
                    PyTuple_SET_ITEM(a_inputs, i+2*n_inputs, a);  /* steals reference */
                    break;
                }
                inner_size = PyArray_STRIDE(a, j) * PyArray_DIM(a, j);
            }

            self->memsteps[i+1] = PyArray_STRIDE(a, PyArray_NDIM(a)-1);
            inputs[i] = PyArray_DATA(a);

        }
    }

    if (last_opcode(self->program) > OP_REDUCTION) {
        char retsig = get_return_sig(self->program);
        int axis = get_reduction_axis(self->program);
        self->memsteps[0] = 0; /*size_from_char(retsig);*/
        if (axis == 255) {
            intp dims[1];
            for (i = 0; i < n_dimensions; i++)
                strides[i] = 0;
            output = PyArray_SimpleNew(0, dims, typecode_from_char(retsig));
            if (!output) goto cleanup_and_exit;
        } else {
            intp dims[MAX_DIMS];
            if (axis < 0)
                axis = n_dimensions + axis;
            if (axis < 0 || axis >= n_dimensions) {
                PyErr_SetString(PyExc_ValueError, "axis out of range");
                goto cleanup_and_exit;
            }
            for (i = j = 0; i < n_dimensions; i++) {
                if (i != axis) {
                    dims[j] = shape[i];
                    j += 1;
                }
            }
            output = PyArray_SimpleNew(n_dimensions-1, dims,
                                       typecode_from_char(retsig));
            if (!output) goto cleanup_and_exit;
            for (i = j = 0; i < n_dimensions; i++) {
                if (i != axis) {
                    strides[i] = PyArray_STRIDES(output)[j];
                    j += 1;
                } else {
                    strides[i] = 0;
                }
            }


        }
        /* TODO optimize strides -- in this and other inddata cases, strides and
           shape can be tweaked to minimize the amount of looping */
        inddata[0].count = n_dimensions;
        inddata[0].findex = -1;
        inddata[0].size = PyArray_ITEMSIZE(output);
        inddata[0].shape = shape;
        inddata[0].strides = strides;
        inddata[0].buffer = PyArray_BYTES(output);
        inddata[0].index = PyMem_New(int, n_dimensions);
        for (j = 0; j < inddata[0].count; j++)
            inddata[0].index[j] = 0;

        if (last_opcode(self->program) >= OP_SUM &&
            last_opcode(self->program) < OP_PROD) {
                PyObject *zero = PyInt_FromLong(0);
                PyArray_FillWithScalar((PyArrayObject *)output, zero);
                Py_DECREF(zero);
        } else {
                PyObject *one = PyInt_FromLong(1);
                PyArray_FillWithScalar((PyArrayObject *)output, one);
                Py_DECREF(one);
        }
    }
    else {
        char retsig = get_return_sig(self->program);
        self->memsteps[0] = size_from_char(retsig);
        output = PyArray_SimpleNew(n_dimensions,
                                   shape,
                                   typecode_from_char(retsig));
        if (!output) goto cleanup_and_exit;
    }


    r = run_interpreter(self, size, PyArray_DATA(output), inputs, inddata, &pc_error);

    if (r < 0) {
        Py_XDECREF(output);
        output = NULL;
        if (r == -1) {
            PyErr_SetString(PyExc_RuntimeError,
                            "an error occurred while running the program");
        } else if (r == -2) {
            PyErr_Format(PyExc_RuntimeError,
                         "bad argument at pc=%d", pc_error);
        } else if (r == -3) {
            PyErr_Format(PyExc_RuntimeError,
                         "bad opcode at pc=%d", pc_error);
        } else {
            PyErr_SetString(PyExc_RuntimeError,
                            "unknown error occurred while running the program");
        }
    }
cleanup_and_exit:
    Py_XDECREF(a_inputs);
    PyMem_Del(inputs);
    if (inddata) {
        for (i = 0; i < n_inputs+1; i++) {
            if (inddata[i].count) {
                PyMem_Del(inddata[i].index);
            }
        }
    }
    PyMem_Del(inddata);
    return output;
}

static PyMethodDef NumExpr_methods[] = {
    {"run", (PyCFunction) NumExpr_run, METH_VARARGS|METH_KEYWORDS, NULL},
    {NULL, NULL}
};

static PyTypeObject NumExprType = {
    PyObject_HEAD_INIT(NULL)
    0,                         /*ob_size*/
    "numexpr.NumExpr",         /*tp_name*/
    sizeof(NumExprObject),     /*tp_basicsize*/
    0,                         /*tp_itemsize*/
    (destructor)NumExpr_dealloc, /*tp_dealloc*/
    0,                         /*tp_print*/
    0,                         /*tp_getattr*/
    0,                         /*tp_setattr*/
    0,                         /*tp_compare*/
    0,                         /*tp_repr*/
    0,                         /*tp_as_number*/
    0,                         /*tp_as_sequence*/
    0,                         /*tp_as_mapping*/
    0,                         /*tp_hash */
    (ternaryfunc)NumExpr_run,  /*tp_call*/
    0,                         /*tp_str*/
    0,                         /*tp_getattro*/
    0,                         /*tp_setattro*/
    0,                         /*tp_as_buffer*/
    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
    "NumExpr objects",         /* tp_doc */
    0,		               /* tp_traverse */
    0,		               /* tp_clear */
    0,		               /* tp_richcompare */
    0,		               /* tp_weaklistoffset */
    0,		               /* tp_iter */
    0,		               /* tp_iternext */
    NumExpr_methods,           /* tp_methods */
    NumExpr_members,           /* tp_members */
    0,                         /* tp_getset */
    0,                         /* tp_base */
    0,                         /* tp_dict */
    0,                         /* tp_descr_get */
    0,                         /* tp_descr_set */
    0,                         /* tp_dictoffset */
    (initproc)NumExpr_init,    /* tp_init */
    0,                         /* tp_alloc */
    NumExpr_new,               /* tp_new */
};

static PyMethodDef module_methods[] = {
    {NULL}
};

void
initinterpreter(void)
{
    PyObject *m, *d, *o;
    int r;

    if (PyType_Ready(&NumExprType) < 0)
        return;

    m = Py_InitModule3("interpreter", module_methods, NULL);
    if (m == NULL)
        return;

    Py_INCREF(&NumExprType);
    PyModule_AddObject(m, "NumExpr", (PyObject *)&NumExprType);

    import_array();

    d = PyDict_New();
    if (!d) return;

#define add_op(sname, name) o = PyInt_FromLong(name);   \
    r = PyDict_SetItemString(d, sname, o);              \
    Py_XDECREF(o);                                      \
    if (r < 0) {PyErr_SetString(PyExc_RuntimeError, "add_op"); return;}
    add_op("noop", OP_NOOP);

    add_op("copy_bb", OP_COPY_BB);
    add_op("invert_bb", OP_INVERT_BB);
    add_op("and_bbb", OP_AND_BBB);
    add_op("or_bbb", OP_OR_BBB);
    add_op("gt_bii", OP_GT_BII);
    add_op("ge_bii", OP_GE_BII);
    add_op("eq_bii", OP_EQ_BII);
    add_op("ne_bii", OP_NE_BII);

    add_op("gt_bff", OP_GT_BFF);
    add_op("ge_bff", OP_GE_BFF);
    add_op("eq_bff", OP_EQ_BFF);
    add_op("ne_bff", OP_NE_BFF);

    add_op("cast_ib", OP_CAST_IB);
    add_op("ones_like_ii", OP_ONES_LIKE_II);
    add_op("copy_ii", OP_COPY_II);
    add_op("neg_ii", OP_NEG_II);
    add_op("add_iii", OP_ADD_III);
    add_op("sub_iii", OP_SUB_III);
    add_op("mul_iii", OP_MUL_III);
    add_op("div_iii", OP_DIV_III);
    add_op("pow_iii", OP_POW_III);
    add_op("mod_iii", OP_MOD_III);
    add_op("where_ifii", OP_WHERE_IFII);

    add_op("cast_fb", OP_CAST_FB);
    add_op("cast_fi", OP_CAST_FI);
    add_op("copy_ff", OP_COPY_FF);
    add_op("ones_like_ff", OP_ONES_LIKE_FF);
    add_op("neg_cc", OP_NEG_CC);
    add_op("neg_ff", OP_NEG_FF);
    add_op("add_fff", OP_ADD_FFF);
    add_op("sub_fff", OP_SUB_FFF);
    add_op("mul_fff", OP_MUL_FFF);
    add_op("div_fff", OP_DIV_FFF);
    add_op("pow_fff", OP_POW_FFF);
    add_op("mod_fff", OP_MOD_FFF);
    add_op("sin_ff", OP_SIN_FF);
    add_op("cos_ff", OP_COS_FF);
    add_op("tan_ff", OP_TAN_FF);
    add_op("sqrt_ff", OP_SQRT_FF);
    add_op("arctan2_fff", OP_ARCTAN2_FFF);
    add_op("where_ffff", OP_WHERE_FFFF);
    add_op("func_ff", OP_FUNC_FF);
    add_op("func_fff", OP_FUNC_FFF);

    add_op("eq_bcc", OP_EQ_BCC);
    add_op("ne_bcc", OP_NE_BCC);

    add_op("cast_cb", OP_CAST_CB);
    add_op("cast_ci", OP_CAST_CI);
    add_op("cast_cf", OP_CAST_CF);
    add_op("copy_cc", OP_COPY_CC);
    add_op("ones_like_cc", OP_ONES_LIKE_CC);
    add_op("neg_cc", OP_NEG_CC);
    add_op("add_ccc", OP_ADD_CCC);
    add_op("sub_ccc", OP_SUB_CCC);
    add_op("mul_ccc", OP_MUL_CCC);
    add_op("div_ccc", OP_DIV_CCC);
    add_op("where_cfcc", OP_WHERE_CFCC);
    add_op("func_cc", OP_FUNC_CC);
    add_op("func_ccc", OP_FUNC_CCC);

    add_op("real_fc", OP_REAL_FC);
    add_op("imag_fc", OP_IMAG_FC);
    add_op("complex_cff", OP_COMPLEX_CFF);

    add_op("sum_iin", OP_SUM_IIN);
    add_op("sum_ffn", OP_SUM_FFN);
    add_op("sum_ccn", OP_SUM_CCN);

    add_op("prod_iin", OP_PROD_IIN);
    add_op("prod_ffn", OP_PROD_FFN);
    add_op("prod_ccn", OP_PROD_CCN);

#undef add_op

    if (PyModule_AddObject(m, "opcodes", d) < 0) return;

    d = PyDict_New();
    if (!d) return;

#define add_func(sname, name) o = PyInt_FromLong(name); \
    r = PyDict_SetItemString(d, sname, o);              \
    Py_XDECREF(o);                                      \
    if (r < 0) {PyErr_SetString(PyExc_RuntimeError, "add_func"); return;}

    add_func("sqrt_ff", FUNC_SQRT_FF);
    add_func("sin_ff", FUNC_SIN_FF);
    add_func("cos_ff", FUNC_COS_FF);
    add_func("tan_ff", FUNC_TAN_FF);
    add_func("arcsin_ff", FUNC_ARCSIN_FF);
    add_func("arccos_ff", FUNC_ARCCOS_FF);
    add_func("arctan_ff", FUNC_ARCTAN_FF);
    add_func("sinh_ff", FUNC_SINH_FF);
    add_func("cosh_ff", FUNC_COSH_FF);
    add_func("tanh_ff", FUNC_TANH_FF);

    add_func("fmod_fff", FUNC_FMOD_FFF);

    add_func("sqrt_cc", FUNC_SQRT_CC);
    add_func("sin_cc", FUNC_SIN_CC);
    add_func("cos_cc", FUNC_COS_CC);
    add_func("tan_cc", FUNC_TAN_CC);
    add_func("arcsin_cc", FUNC_ARCSIN_CC);
    add_func("arccos_cc", FUNC_ARCCOS_CC);
    add_func("arctan_cc", FUNC_ARCTAN_CC);
    add_func("sinh_cc", FUNC_SINH_CC);
    add_func("cosh_cc", FUNC_COSH_CC);
    add_func("tanh_cc", FUNC_TANH_CC);

    add_func("pow_ccc", FUNC_POW_CCC);

#undef add_func

    if (PyModule_AddObject(m, "funccodes", d) < 0) return;

    if (PyModule_AddObject(m, "allaxes", PyInt_FromLong(255)) < 0) return;
    if (PyModule_AddObject(m, "maxdims", PyInt_FromLong(MAX_DIMS)) < 0) return;

}