1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
|
import new
from numpy import *
from numpy.testing import *
set_package_path()
from numexpr import E, numexpr, evaluate, disassemble
restore_path()
class test_numexpr(NumpyTestCase):
def check_simple(self):
ex = 2.0 * E.a + 3.0 * E.b * E.c
func = numexpr(ex, signature=[('a', float), ('b', float), ('c', float)])
x = func(array([1., 2, 3]), array([4., 5, 6]), array([7., 8, 9]))
assert_array_equal(x, array([ 86., 124., 168.]))
def check_simple_expr_small_array(self):
func = numexpr(E.a)
x = arange(100.0)
y = func(x)
assert_array_equal(x, y)
def check_simple_expr(self):
func = numexpr(E.a)
x = arange(1e5)
y = func(x)
assert_array_equal(x, y)
def check_rational_expr(self):
func = numexpr((E.a + 2.0*E.b) / (1 + E.a + 4*E.b*E.b))
a = arange(1e5)
b = arange(1e5) * 0.1
x = (a + 2*b) / (1 + a + 4*b*b)
y = func(a, b)
assert_array_equal(x, y)
def check_reductions(self):
# Check that they compile OK.
assert_equal(disassemble(numexpr("sum(x**2+2, axis=None)", [('x', float)])),
[('mul_fff', 't3', 'r1[x]', 'r1[x]'),
('add_fff', 't3', 't3', 'c2[2.0]'),
('sum_ffn', 'r0', 't3', None)])
assert_equal(disassemble(numexpr("sum(x**2+2, axis=1)", [('x', float)])),
[('mul_fff', 't3', 'r1[x]', 'r1[x]'),
('add_fff', 't3', 't3', 'c2[2.0]'),
('sum_ffn', 'r0', 't3', 1)])
assert_equal(disassemble(numexpr("prod(x**2+2, axis=2)", [('x', float)])),
[('mul_fff', 't3', 'r1[x]', 'r1[x]'),
('add_fff', 't3', 't3', 'c2[2.0]'),
('prod_ffn', 'r0', 't3', 2)])
# Check that full reductions work.
x = arange(10.0)
assert_equal(evaluate("sum(x**2+2,axis=0)"), sum(x**2+2,axis=0))
assert_equal(evaluate("prod(x**2+2,axis=0)"), prod(x**2+2,axis=0))
# Check that reductions along an axis work
y = arange(9.0).reshape(3,3)
assert_equal(evaluate("sum(y**2, axis=1)"), sum(y**2, axis=1))
assert_equal(evaluate("sum(y**2, axis=0)"), sum(y**2, axis=0))
assert_equal(evaluate("sum(y**2, axis=None)"), sum(y**2, axis=None))
assert_equal(evaluate("prod(y**2, axis=1)"), prod(y**2, axis=1))
assert_equal(evaluate("prod(y**2, axis=0)"), prod(y**2, axis=0))
assert_equal(evaluate("prod(y**2, axis=None)"), prod(y**2, axis=None))
# Check integers
x = x.astype(int)
assert_equal(evaluate("sum(x**2+2,axis=0)"), sum(x**2+2,axis=0))
assert_equal(evaluate("prod(x**2+2,axis=0)"), prod(x**2+2,axis=0))
# Check complex
x = x + 5j
assert_equal(evaluate("sum(x**2+2,axis=0)"), sum(x**2+2,axis=0))
assert_equal(evaluate("prod(x**2+2,axis=0)"), prod(x**2+2,axis=0))
# Check boolean (should cast to integer)
x = (arange(10) % 2).astype(bool)
assert_equal(evaluate("prod(x,axis=0)"), prod(x,axis=0))
assert_equal(evaluate("sum(x,axis=0)"), sum(x,axis=0))
def check_axis(self):
y = arange(9.0).reshape(3,3)
try:
evaluate("sum(y, axis=2)")
except ValueError:
pass
else:
raise ValueError("should raise exception!")
try:
evaluate("sum(y, axis=-3)")
except ValueError:
pass
else:
raise ValueError("should raise exception!")
def check_r0_reuse(self):
assert_equal(disassemble(numexpr("x**2+2", [('x', float)])),
[('mul_fff', 'r0', 'r1[x]', 'r1[x]'),
('add_fff', 'r0', 'r0', 'c2[2.0]')])
class test_evaluate(NumpyTestCase):
def check_simple(self):
a = array([1., 2., 3.])
b = array([4., 5., 6.])
c = array([7., 8., 9.])
x = evaluate("2*a + 3*b*c")
assert_array_equal(x, array([ 86., 124., 168.]))
def check_simple_expr_small_array(self):
x = arange(100.0)
y = evaluate("x")
assert_array_equal(x, y)
def check_simple_expr(self):
x = arange(1e5)
y = evaluate("x")
assert_array_equal(x, y)
def check_rational_expr(self):
a = arange(1e5)
b = arange(1e5) * 0.1
x = (a + 2*b) / (1 + a + 4*b*b)
y = evaluate("(a + 2*b) / (1 + a + 4*b*b)")
assert_array_equal(x, y)
def check_complex_expr(self):
def complex(a, b):
c = zeros(a.shape, dtype=complex_)
c.real = a
c.imag = b
return c
a = arange(1e4)
b = arange(1e4)**1e-5
z = a + 1j*b
x = z.imag
x = sin(complex(a, b)).real + z.imag
y = evaluate("sin(complex(a, b)).real + z.imag")
assert_array_almost_equal(x, y)
def check_complex_strides(self):
a = arange(100).reshape(10,10)[::2]
b = arange(50).reshape(5,10)
assert_array_equal(evaluate("a+b"), a+b)
c = empty([10], dtype=[('c1', int32), ('c2', uint16)])
c['c1'] = arange(10)
c['c2'].fill(0xaaaa)
c1 = c['c1']
a0 = a[0]
assert_array_equal(evaluate("c1"), c1)
assert_array_equal(evaluate("a0+c1"), a0+c1)
def check_broadcasting(self):
a = arange(100).reshape(10,10)[::2]
c = arange(10)
d = arange(5).reshape(5,1)
assert_array_equal(evaluate("a+c"), a+c)
assert_array_equal(evaluate("a+d"), a+d)
expr = numexpr("2.0*a+3.0*c",[('a',float),('c', float)])
assert_array_equal(expr(a,c), 2.0*a+3.0*c)
def check_all_scalar(self):
a = 3.
b = 4.
assert_equal(evaluate("a+b"), a+b)
expr = numexpr("2*a+3*b",[('a',float),('b', float)])
assert_equal(expr(a,b), 2*a+3*b)
def check_run(self):
a = arange(100).reshape(10,10)[::2]
b = arange(10)
expr = numexpr("2*a+3*b",[('a',float),('b', float)])
assert_array_equal(expr(a,b), expr.run(a,b))
def check_illegal_value(self):
a = arange(3)
try:
evaluate("a < [0, 0, 0]")
except TypeError:
pass
else:
self.fail()
tests = [
('MISC', ['b*c+d*e',
'2*a+3*b',
'sinh(a)',
'2*a + (cos(3)+5)*sinh(cos(b))',
'2*a + arctan2(a, b)',
'arcsin(0.5)',
'where(a, 2, b)',
'where((a-10).real, a, 2)',
'cos(1+1)',
'1+1',
'1',
'cos(a2)',
'(a+1)**0'])]
optests = []
for op in list('+-*/%') + ['**']:
optests.append("(a+1) %s (b+3)" % op)
optests.append("3 %s (b+3)" % op)
optests.append("(a+1) %s 4" % op)
optests.append("2 %s (b+3)" % op)
optests.append("(a+1) %s 2" % op)
optests.append("(a+1) %s -1" % op)
optests.append("(a+1) %s 0.5" % op)
tests.append(('OPERATIONS', optests))
cmptests = []
for op in ['<', '<=', '==', '>=', '>', '!=']:
cmptests.append("a/2+5 %s b" % op)
cmptests.append("a/2+5 %s 7" % op)
cmptests.append("7 %s b" % op)
cmptests.append("7.0 %s 5" % op)
tests.append(('COMPARISONS', cmptests))
func1tests = []
for func in ['copy', 'ones_like', 'sin', 'cos', 'tan', 'sqrt', 'sinh', 'cosh', 'tanh']:
func1tests.append("a + %s(b+c)" % func)
tests.append(('1-ARG FUNCS', func1tests))
func2tests = []
for func in ['arctan2', 'fmod']:
func2tests.append("a + %s(b+c, d+1)" % func)
func2tests.append("a + %s(b+c, 1)" % func)
func2tests.append("a + %s(1, d+1)" % func)
tests.append(('2-ARG FUNCS', func2tests))
powtests = []
for n in (-2.5, -1.5, -1.3, -.5, 0, 0.5, 1, 0.5, 1, 2.3, 2.5):
powtests.append("(a+1)**%s" % n)
tests.append(('POW TESTS', powtests))
def equal(a, b, exact):
if exact:
return (shape(a) == shape(b)) and alltrue(ravel(a) == ravel(b),axis=0)
else:
return (shape(a) == shape(b)) and (allclose(ravel(a), ravel(b)) or alltrue(ravel(a) == ravel(b),axis=0)) # XXX report a bug?
class Skip(Exception): pass
class test_expressions(NumpyTestCase):
pass
def generate_check_expressions():
test_no = [0]
def make_check_method(a, a2, b, c, d, e, x, expr,
test_scalar, dtype, optimization, exact):
this_locals = locals()
def method(self):
try:
npval = eval(expr, globals(), this_locals)
except:
return
try:
neval = evaluate(expr, local_dict=this_locals,
optimization=optimization)
assert equal(npval, neval, exact), \
"""%r
(test_scalar=%r, dtype=%r, optimization=%r, exact=%r,
npval=%r (%r), neval=%r (%r))""" % (expr, test_scalar, dtype.__name__,
optimization, exact,
npval, type(npval), neval, type(neval))
except AssertionError:
raise
except NotImplementedError:
self.warn('%r not implemented for %s' % (expr,dtype.__name__))
except:
self.warn('numexpr error for expression %r' % (expr,))
raise
test_no[0] += 1
name = 'check_%04d' % (test_no[0],)
setattr(test_expressions, name,
new.instancemethod(method, None, test_expressions))
x = None
for test_scalar in [0,1,2]:
for dtype in [int, float, complex]:
array_size = 100
a = arange(2*array_size, dtype=dtype)[::2]
a2 = zeros([array_size, array_size], dtype=dtype)
b = arange(array_size, dtype=dtype) / array_size
c = arange(array_size, dtype=dtype)
d = arange(array_size, dtype=dtype)
e = arange(array_size, dtype=dtype)
if dtype == complex:
a = a.real
for x in [a2, b, c, d, e]:
x += 1j
x *= 1+1j
if test_scalar == 1:
a = a[array_size/2]
if test_scalar == 2:
b = b[array_size/2]
for optimization, exact in [('none', False), ('moderate', False), ('aggressive', False)]:
for section_name, section_tests in tests:
for expr in section_tests:
if dtype == complex and (
'<' in expr or '>' in expr or '%' in expr
or "arctan2" in expr or "fmod" in expr):
continue # skip complex comparisons
if dtype == int and test_scalar and expr == '(a+1) ** -1':
continue
make_check_method(a, a2, b, c, d, e, x,
expr, test_scalar, dtype,
optimization, exact)
generate_check_expressions()
if __name__ == '__main__':
NumpyTest().run()
|