File: test_numexpr.py

package info (click to toggle)
python-scipy 0.6.0-12
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 32,016 kB
  • ctags: 46,675
  • sloc: cpp: 124,854; ansic: 110,614; python: 108,664; fortran: 76,260; objc: 424; makefile: 384; sh: 10
file content (310 lines) | stat: -rw-r--r-- 11,086 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import new
from numpy import *
from numpy.testing import *

set_package_path()
from numexpr import E, numexpr, evaluate, disassemble
restore_path()

class test_numexpr(NumpyTestCase):
    def check_simple(self):
        ex = 2.0 * E.a + 3.0 * E.b * E.c
        func = numexpr(ex, signature=[('a', float), ('b', float), ('c', float)])
        x = func(array([1., 2, 3]), array([4., 5, 6]), array([7., 8, 9]))
        assert_array_equal(x, array([  86.,  124.,  168.]))

    def check_simple_expr_small_array(self):
        func = numexpr(E.a)
        x = arange(100.0)
        y = func(x)
        assert_array_equal(x, y)

    def check_simple_expr(self):
        func = numexpr(E.a)
        x = arange(1e5)
        y = func(x)
        assert_array_equal(x, y)

    def check_rational_expr(self):
        func = numexpr((E.a + 2.0*E.b) / (1 + E.a + 4*E.b*E.b))
        a = arange(1e5)
        b = arange(1e5) * 0.1
        x = (a + 2*b) / (1 + a + 4*b*b)
        y = func(a, b)
        assert_array_equal(x, y)

    def check_reductions(self):
        # Check that they compile OK.
        assert_equal(disassemble(numexpr("sum(x**2+2, axis=None)", [('x', float)])),
                    [('mul_fff', 't3', 'r1[x]', 'r1[x]'),
                     ('add_fff', 't3', 't3', 'c2[2.0]'),
                     ('sum_ffn', 'r0', 't3', None)])
        assert_equal(disassemble(numexpr("sum(x**2+2, axis=1)", [('x', float)])),
                    [('mul_fff', 't3', 'r1[x]', 'r1[x]'),
                     ('add_fff', 't3', 't3', 'c2[2.0]'),
                     ('sum_ffn', 'r0', 't3', 1)])
        assert_equal(disassemble(numexpr("prod(x**2+2, axis=2)", [('x', float)])),
                    [('mul_fff', 't3', 'r1[x]', 'r1[x]'),
                     ('add_fff', 't3', 't3', 'c2[2.0]'),
                     ('prod_ffn', 'r0', 't3', 2)])
        # Check that full reductions work.
        x = arange(10.0)
        assert_equal(evaluate("sum(x**2+2,axis=0)"), sum(x**2+2,axis=0))
        assert_equal(evaluate("prod(x**2+2,axis=0)"), prod(x**2+2,axis=0))
        # Check that reductions along an axis work
        y = arange(9.0).reshape(3,3)
        assert_equal(evaluate("sum(y**2, axis=1)"), sum(y**2, axis=1))
        assert_equal(evaluate("sum(y**2, axis=0)"), sum(y**2, axis=0))
        assert_equal(evaluate("sum(y**2, axis=None)"), sum(y**2, axis=None))
        assert_equal(evaluate("prod(y**2, axis=1)"), prod(y**2, axis=1))
        assert_equal(evaluate("prod(y**2, axis=0)"), prod(y**2, axis=0))
        assert_equal(evaluate("prod(y**2, axis=None)"), prod(y**2, axis=None))
        # Check integers
        x = x.astype(int)
        assert_equal(evaluate("sum(x**2+2,axis=0)"), sum(x**2+2,axis=0))
        assert_equal(evaluate("prod(x**2+2,axis=0)"), prod(x**2+2,axis=0))
        # Check complex
        x = x + 5j
        assert_equal(evaluate("sum(x**2+2,axis=0)"), sum(x**2+2,axis=0))
        assert_equal(evaluate("prod(x**2+2,axis=0)"), prod(x**2+2,axis=0))
        # Check boolean (should cast to integer)
        x = (arange(10) % 2).astype(bool)
        assert_equal(evaluate("prod(x,axis=0)"), prod(x,axis=0))
        assert_equal(evaluate("sum(x,axis=0)"), sum(x,axis=0))

    def check_axis(self):
        y = arange(9.0).reshape(3,3)
        try:
            evaluate("sum(y, axis=2)")
        except ValueError:
            pass
        else:
            raise ValueError("should raise exception!")
        try:
            evaluate("sum(y, axis=-3)")
        except ValueError:
            pass
        else:
            raise ValueError("should raise exception!")




    def check_r0_reuse(self):
        assert_equal(disassemble(numexpr("x**2+2", [('x', float)])),
                    [('mul_fff', 'r0', 'r1[x]', 'r1[x]'),
                     ('add_fff', 'r0', 'r0', 'c2[2.0]')])

class test_evaluate(NumpyTestCase):
    def check_simple(self):
        a = array([1., 2., 3.])
        b = array([4., 5., 6.])
        c = array([7., 8., 9.])
        x = evaluate("2*a + 3*b*c")
        assert_array_equal(x, array([  86.,  124.,  168.]))

    def check_simple_expr_small_array(self):
        x = arange(100.0)
        y = evaluate("x")
        assert_array_equal(x, y)

    def check_simple_expr(self):
        x = arange(1e5)
        y = evaluate("x")
        assert_array_equal(x, y)

    def check_rational_expr(self):
        a = arange(1e5)
        b = arange(1e5) * 0.1
        x = (a + 2*b) / (1 + a + 4*b*b)
        y = evaluate("(a + 2*b) / (1 + a + 4*b*b)")
        assert_array_equal(x, y)

    def check_complex_expr(self):
        def complex(a, b):
            c = zeros(a.shape, dtype=complex_)
            c.real = a
            c.imag = b
            return c
        a = arange(1e4)
        b = arange(1e4)**1e-5
        z = a + 1j*b
        x = z.imag
        x = sin(complex(a, b)).real + z.imag
        y = evaluate("sin(complex(a, b)).real + z.imag")
        assert_array_almost_equal(x, y)


    def check_complex_strides(self):
        a = arange(100).reshape(10,10)[::2]
        b = arange(50).reshape(5,10)
        assert_array_equal(evaluate("a+b"), a+b)
        c = empty([10], dtype=[('c1', int32), ('c2', uint16)])
        c['c1'] = arange(10)
        c['c2'].fill(0xaaaa)
        c1 = c['c1']
        a0 = a[0]
        assert_array_equal(evaluate("c1"), c1)
        assert_array_equal(evaluate("a0+c1"), a0+c1)


    def check_broadcasting(self):
        a = arange(100).reshape(10,10)[::2]
        c = arange(10)
        d = arange(5).reshape(5,1)
        assert_array_equal(evaluate("a+c"), a+c)
        assert_array_equal(evaluate("a+d"), a+d)
        expr = numexpr("2.0*a+3.0*c",[('a',float),('c', float)])
        assert_array_equal(expr(a,c), 2.0*a+3.0*c)

    def check_all_scalar(self):
        a = 3.
        b = 4.
        assert_equal(evaluate("a+b"), a+b)
        expr = numexpr("2*a+3*b",[('a',float),('b', float)])
        assert_equal(expr(a,b), 2*a+3*b)

    def check_run(self):
        a = arange(100).reshape(10,10)[::2]
        b = arange(10)
        expr = numexpr("2*a+3*b",[('a',float),('b', float)])
        assert_array_equal(expr(a,b), expr.run(a,b))

    def check_illegal_value(self):
        a = arange(3)
        try:
            evaluate("a < [0, 0, 0]")
        except TypeError:
            pass
        else:
            self.fail()


tests = [
('MISC', ['b*c+d*e',
          '2*a+3*b',
          'sinh(a)',
          '2*a + (cos(3)+5)*sinh(cos(b))',
          '2*a + arctan2(a, b)',
          'arcsin(0.5)',
          'where(a, 2, b)',
          'where((a-10).real, a, 2)',
          'cos(1+1)',
          '1+1',
          '1',
          'cos(a2)',
          '(a+1)**0'])]

optests = []
for op in list('+-*/%') + ['**']:
    optests.append("(a+1) %s (b+3)" % op)
    optests.append("3 %s (b+3)" % op)
    optests.append("(a+1) %s 4" % op)
    optests.append("2 %s (b+3)" % op)
    optests.append("(a+1) %s 2" % op)
    optests.append("(a+1) %s -1" % op)
    optests.append("(a+1) %s 0.5" % op)
tests.append(('OPERATIONS', optests))

cmptests = []
for op in ['<', '<=', '==', '>=', '>', '!=']:
    cmptests.append("a/2+5 %s b" % op)
    cmptests.append("a/2+5 %s 7" % op)
    cmptests.append("7 %s b" % op)
    cmptests.append("7.0 %s 5" % op)
tests.append(('COMPARISONS', cmptests))

func1tests = []
for func in ['copy', 'ones_like', 'sin', 'cos', 'tan', 'sqrt', 'sinh', 'cosh', 'tanh']:
    func1tests.append("a + %s(b+c)" % func)
tests.append(('1-ARG FUNCS', func1tests))

func2tests = []
for func in ['arctan2', 'fmod']:
    func2tests.append("a + %s(b+c, d+1)" % func)
    func2tests.append("a + %s(b+c, 1)" % func)
    func2tests.append("a + %s(1, d+1)" % func)
tests.append(('2-ARG FUNCS', func2tests))

powtests = []
for n in (-2.5, -1.5, -1.3, -.5, 0, 0.5, 1, 0.5, 1, 2.3, 2.5):
    powtests.append("(a+1)**%s" % n)
tests.append(('POW TESTS', powtests))

def equal(a, b, exact):
    if exact:
        return (shape(a) == shape(b)) and alltrue(ravel(a) == ravel(b),axis=0)
    else:
        return (shape(a) == shape(b)) and (allclose(ravel(a), ravel(b)) or alltrue(ravel(a) == ravel(b),axis=0)) # XXX report a bug?

class Skip(Exception): pass

class test_expressions(NumpyTestCase):
    pass

def generate_check_expressions():
    test_no = [0]
    def make_check_method(a, a2, b, c, d, e, x, expr,
                          test_scalar, dtype, optimization, exact):
        this_locals = locals()
        def method(self):
            try:
                npval = eval(expr, globals(), this_locals)
            except:
                return
            try:
                neval = evaluate(expr, local_dict=this_locals,
                                 optimization=optimization)
                assert equal(npval, neval, exact), \
                    """%r
(test_scalar=%r, dtype=%r, optimization=%r, exact=%r,
 npval=%r (%r), neval=%r (%r))""" % (expr, test_scalar, dtype.__name__,
                                     optimization, exact,
                                     npval, type(npval), neval, type(neval))
            except AssertionError:
                raise
            except NotImplementedError:
                self.warn('%r not implemented for %s' % (expr,dtype.__name__))
            except:
                self.warn('numexpr error for expression %r' % (expr,))
                raise
        test_no[0] += 1
        name = 'check_%04d' % (test_no[0],)
        setattr(test_expressions, name,
                new.instancemethod(method, None, test_expressions))
    x = None
    for test_scalar in [0,1,2]:
        for dtype in [int, float, complex]:
            array_size = 100
            a = arange(2*array_size, dtype=dtype)[::2]
            a2 = zeros([array_size, array_size], dtype=dtype)
            b = arange(array_size, dtype=dtype) / array_size
            c = arange(array_size, dtype=dtype)
            d = arange(array_size, dtype=dtype)
            e = arange(array_size, dtype=dtype)
            if dtype == complex:
                a = a.real
                for x in [a2, b, c, d, e]:
                    x += 1j
                    x *= 1+1j
            if test_scalar == 1:
                a = a[array_size/2]
            if test_scalar == 2:
                b = b[array_size/2]
            for optimization, exact in [('none', False), ('moderate', False), ('aggressive', False)]:
                for section_name, section_tests in tests:
                    for expr in section_tests:
                        if dtype == complex and (
                               '<' in expr or '>' in expr or '%' in expr
                               or "arctan2" in expr or "fmod" in expr):
                            continue # skip complex comparisons
                        if dtype == int and test_scalar and expr == '(a+1) ** -1':
                            continue
                        make_check_method(a, a2, b, c, d, e, x,
                                          expr, test_scalar, dtype,
                                          optimization, exact)

generate_check_expressions()

if __name__ == '__main__':
    NumpyTest().run()