File: _c_densities.py

package info (click to toggle)
python-scipy 0.6.0-12
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 32,016 kB
  • ctags: 46,675
  • sloc: cpp: 124,854; ansic: 110,614; python: 108,664; fortran: 76,260; objc: 424; makefile: 384; sh: 10
file content (224 lines) | stat: -rw-r--r-- 7,087 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#! /usr/bin/python
#
# Copyrighted David Cournapeau
# Last Change: Sat Jun 09 10:00 PM 2007 J

"""This module implements some function of densities module in C for efficiency
reasons.  gaussian, such as pdf estimation, confidence interval/ellipsoids,
etc..."""

__docformat__ = 'restructuredtext'

# This module uses a C implementation through ctypes, for diagonal cases
# TODO:
#   - portable way to find/open the shared library
#   - full cov matrice
#   - test before inclusion

import numpy as N
import numpy.linalg as lin
#from numpy.random import randn
#from scipy.stats import chi2
#import densities as D

import ctypes
from ctypes import c_uint, c_int
from numpy.ctypeslib import ndpointer, load_library

ctypes_major    = int(ctypes.__version__.split('.')[0])
if ctypes_major < 1:
    raise ImportError(msg =  "version of ctypes is %s, expected at least %s"\
            % (ctypes.__version__, '1.0.1'))

# Requirements for diag gden
_gden   = load_library('c_gden.so', __file__)
arg1    = ndpointer(dtype=N.float64)
arg2    = c_uint
arg3    = c_uint
arg4    = ndpointer(dtype=N.float64)
arg5    = ndpointer(dtype=N.float64)
arg6    = ndpointer(dtype=N.float64)
_gden.gden_diag.argtypes    = [arg1, arg2, arg3, arg4, arg5, arg6]
_gden.gden_diag.restype     = c_int

# Error classes
class DenError(Exception):
    """Base class for exceptions in this module.
    
    Attributes:
        expression -- input expression in which the error occurred
        message -- explanation of the error"""
    def __init__(self, message):
        self.message    = message
    
    def __str__(self):
        return self.message

# The following function do all the fancy stuff to check that parameters
# are Ok, and call the right implementation if args are OK.
def gauss_den(x, mu, va, log = False):
    """ Compute multivariate Gaussian density at points x for 
    mean mu and variance va.
    
    Vector are row vectors, except va which can be a matrix
    (row vector variance for diagonal variance)
    
    If log is True, than the log density is returned 
    (useful for underflow ?)"""
    mu  = N.atleast_2d(mu)
    va  = N.atleast_2d(va)
    x   = N.atleast_2d(x)
    
    #=======================#
    # Checking parameters   #
    #=======================#
    if len(N.shape(mu)) != 2:
        raise DenError("mu is not rank 2")
        
    if len(N.shape(va)) != 2:
        raise DenError("va is not rank 2")
        
    if len(N.shape(x)) != 2:
        raise DenError("x is not rank 2")
        
    (n, d)      = N.shape(x)
    (dm0, dm1)  = N.shape(mu)
    (dv0, dv1)  = N.shape(va)
    
    # Check x and mu same dimension
    if dm0 != 1:
        msg = "mean must be a row vector!"
        raise DenError(msg)
    if dm1 != d:
        msg = "x and mu not same dim"
        raise DenError(msg)
    # Check va and mu same size
    if dv1 != d:
        msg = "mu and va not same dim"
        raise DenError(msg)
    if dv0 != 1 and dv0 != d:
        msg = "va not square"
        raise DenError(msg)

    #===============#
    # Computation   #
    #===============#
    if d == 1:
        # scalar case
        return _scalar_gauss_den(x[:, 0], mu[0, 0], va[0, 0], log)
    elif dv0 == 1:
        # Diagonal matrix case
        return _diag_gauss_den(x, mu, va, log)
    elif dv1 == dv0:
        # full case
        return  _full_gauss_den(x, mu, va, log)
    else:
        raise DenError("variance mode not recognized, this is a bug")

# Those 3 functions do almost all the actual computation
def _scalar_gauss_den(x, mu, va, log):
    """ This function is the actual implementation
    of gaussian pdf in scalar case. It assumes all args
    are conformant, so it should not be used directly
    
    ** Expect centered data (ie with mean removed) **

    Call gauss_den instead"""
    d       = mu.size
    inva    = 1/va
    fac     = (2*N.pi) ** (-d/2.0) * N.sqrt(inva)
    y       = ((x-mu) ** 2) * -0.5 * inva
    if not log:
        y   = fac * N.exp(y)
    else:
        y   = y + log(fac)

    return y
    
def _diag_gauss_den(x, mu, va, log):
    """ This function is the actual implementation
    of gaussian pdf in scalar case. It assumes all args
    are conformant, so it should not be used directly
    
    ** Expect centered data (ie with mean removed) **

    Call gauss_den instead"""
    # Diagonal matrix case
    d   = mu.size
    n   = x.shape[0]
    if not log:
        y       = N.zeros(n)
        vat     = va.copy()
        # _gden.gden_diag(N.require(x, requirements = 'C'), n, d, 
        #         N.require(mu, requirements = 'C'),
        #         N.require(inva, requirements = 'C'),
        #         N.require(y, requirements = 'C'))
        x       = N.require(x, requirements = 'C')
        mu      = N.require(mu, requirements = 'C')
        vat     = N.require(vat, requirements = 'C')
        y       = N.require(y, requirements = 'C')
        _gden.gden_diag(x, n, d, mu, vat, y)
        return y
        # _gden.gden_diag.restype     = c_int
        # _gden.gden_diag.argtypes    = [POINTER(c_double), c_uint, c_uint,
        #         POINTER(c_double), POINTER(c_double), POINTER(c_double)]

        # y   = N.zeros(n)
        # inva= 1/va
        # _gden.gden_diag(x.ctypes.data_as(POINTER(c_double)),
        #     n, d,
        #     mu.ctypes.data_as(POINTER(c_double)),
        #     inva.ctypes.data_as(POINTER(c_double)),
        #     y.ctypes.data_as(POINTER(c_double)))
    else:
        y   = _scalar_gauss_den(x[:, 0], mu[0, 0], va[0, 0], log)
        for i in range(1, d):
            y    +=  _scalar_gauss_den(x[:, i], mu[0, i], va[0, i], log)
        return y

def _full_gauss_den(x, mu, va, log):
    """ This function is the actual implementation
    of gaussian pdf in full matrix case. 
    
    It assumes all args are conformant, so it should 
    not be used directly Call gauss_den instead
    
    ** Expect centered data (ie with mean removed) **

    Does not check if va is definite positive (on inversible 
    for that matter), so the inverse computation and/or determinant
    would throw an exception."""
    d       = mu.size
    inva    = lin.inv(va)
    fac     = 1 / N.sqrt( (2*N.pi) ** d * N.fabs(lin.det(va)))

    # we are using a trick with sum to "emulate" 
    # the matrix multiplication inva * x without any explicit loop
    y   = N.dot((x-mu), inva)
    y   = -0.5 * N.sum(y * (x-mu), 1)

    if not log:
        y   = fac * N.exp(y)
    else:
        y   = y + N.log(fac)
 
    return y

if __name__ == "__main__":
    pass
    ##=========================================
    ## Test accuracy between pure and C python
    ##=========================================
    #mu  = N.array([2.0, 3])
    #va  = N.array([5.0, 3])

    ## Generate a multivariate gaussian of mean mu and covariance va
    #nframes = 1e4
    #X       = randn(nframes, 2)
    #Yc      = N.dot(N.diag(N.sqrt(va)), X.transpose())
    #Yc      = Yc.transpose() + mu

    #Y   = D.gauss_den(Yc, mu, va)
    #Yt  = gauss_den(Yc, mu, va)

    #print "Diff is " + str(N.sqrt(N.sum((Y-Yt) ** 2))/nframes/2)