File: densities.py

package info (click to toggle)
python-scipy 0.6.0-12
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 32,016 kB
  • ctags: 46,675
  • sloc: cpp: 124,854; ansic: 110,614; python: 108,664; fortran: 76,260; objc: 424; makefile: 384; sh: 10
file content (307 lines) | stat: -rw-r--r-- 9,951 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#! /usr/bin/python
#
# Copyrighted David Cournapeau
# Last Change: Thu Jul 12 04:00 PM 2007 J
"""This module implements various basic functions related to multivariate
gaussian, such as pdf estimation, confidence interval/ellipsoids, etc..."""

__docformat__ = 'restructuredtext'

import numpy as N
import numpy.linalg as lin
#from numpy.random import randn
from scipy.stats import chi2
import misc

# Error classes
class DenError(Exception):
    """Base class for exceptions in this module.
    
    Attributes:
        expression -- input expression in which the error occurred
        message -- explanation of the error"""
    def __init__(self, message):
        self.message    = message
        Exception.__init__(self)
    
    def __str__(self):
        return self.message

# The following function do all the fancy stuff to check that parameters
# are Ok, and call the right implementation if args are OK.
def gauss_den(x, mu, va, log = False):
    """Compute multivariate Gaussian density at points x for 
    mean mu and variance va.
    
    :Parameters:
        x : ndarray
            points where to estimate the pdf.  each row of the array is one
            point of d dimension
        mu : ndarray
            mean of the pdf. Should have same dimension d than points in x.
        va : ndarray
            variance of the pdf. If va has d elements, va is interpreted as the
            diagonal elements of the actual covariance matrix. Otherwise,
            should be a dxd matrix (and positive definite).
        log : boolean
            if True, returns the log-pdf instead of the pdf.

    :Returns:
        pdf : ndarray
            Returns a rank 1 array of the pdf at points x.

    Note
    ----
        Vector are row vectors, except va which can be a matrix
        (row vector variance for diagonal variance)."""
    
    lmu  = N.atleast_2d(mu)
    lva  = N.atleast_2d(va)
    lx   = N.atleast_2d(x)
    
    #=======================#
    # Checking parameters   #
    #=======================#
    if len(N.shape(lmu)) != 2:
        raise DenError("mu is not rank 2")
        
    if len(N.shape(lva)) != 2:
        raise DenError("va is not rank 2")
        
    if len(N.shape(lx)) != 2:
        raise DenError("x is not rank 2")
        
    d = N.shape(lx)[1]
    (dm0, dm1) = N.shape(lmu)
    (dv0, dv1) = N.shape(lva)
    
    # Check x and mu same dimension
    if dm0 != 1:
        msg = "mean must be a row vector!"
        raise DenError(msg)
    if dm1 != d:
        msg = "x and mu not same dim"
        raise DenError(msg)
    # Check va and mu same size
    if dv1 != d:
        msg = "mu and va not same dim"
        raise DenError(msg)
    if dv0 != 1 and dv0 != d:
        msg = "va not square"
        raise DenError(msg)

    #===============#
    # Computation   #
    #===============#
    if d == 1:
        # scalar case
        return _scalar_gauss_den(lx[:, 0], lmu[0, 0], lva[0, 0], log)
    elif dv0 == 1:
        # Diagonal matrix case
        return _diag_gauss_den(lx, lmu, lva, log)
    elif dv1 == dv0:
        # full case
        return  _full_gauss_den(lx, lmu, lva, log)
    else:
        raise DenError("variance mode not recognized, this is a bug")

# Those 3 functions do almost all the actual computation
def _scalar_gauss_den(x, mu, va, log):
    """ This function is the actual implementation
    of gaussian pdf in scalar case. It assumes all args
    are conformant, so it should not be used directly
    
    Call gauss_den instead"""
    d       = mu.size
    inva    = 1/va
    fac     = (2*N.pi) ** (-d/2.0) * N.sqrt(inva)
    inva    *= -0.5
    y       = ((x-mu) ** 2) * inva
    if not log:
        y   = fac * N.exp(y)
    else:
        y   += N.log(fac)

    return y
    
def _diag_gauss_den(x, mu, va, log):
    """ This function is the actual implementation
    of gaussian pdf in scalar case. It assumes all args
    are conformant, so it should not be used directly
    
    Call gauss_den instead"""
    # Diagonal matrix case
    d   = mu.size
    #n   = x.shape[0]
    if not log:
        inva = 1/va[0]
        fac = (2*N.pi) ** (-d/2.0) * N.prod(N.sqrt(inva))
        inva *= -0.5
        x = x - mu
        x **= 2
        y = fac * N.exp(N.dot(x, inva))
    else:
        # XXX optimize log case as non log case above
        y = _scalar_gauss_den(x[:, 0], mu[0, 0], va[0, 0], log)
        for i in range(1, d):
            y +=  _scalar_gauss_den(x[:, i], mu[0, i], va[0, i], log)
    return y

def _full_gauss_den(x, mu, va, log):
    """ This function is the actual implementation
    of gaussian pdf in full matrix case. 
    
    It assumes all args are conformant, so it should 
    not be used directly Call gauss_den instead
    
    Does not check if va is definite positive (on inversible 
    for that matter), so the inverse computation and/or determinant
    would throw an exception."""
    d       = mu.size
    inva    = lin.inv(va)
    fac     = 1 / N.sqrt( (2*N.pi) ** d * N.fabs(lin.det(va)))

    # we are using a trick with sum to "emulate" 
    # the matrix multiplication inva * x without any explicit loop
    #y   = -0.5 * N.sum(N.dot((x-mu), inva) * (x-mu), 1)
    y   = -0.5 * N.dot(N.dot((x-mu), inva) * (x-mu), 
                       N.ones((mu.size, 1), x.dtype))[:, 0]

    if not log:
        y   = fac * N.exp(y)
    else:
        y   = y + N.log(fac)
 
    return y

# To get coordinatea of a confidence ellipse from multi-variate gaussian pdf
def gauss_ell(mu, va, dim = misc.DEF_VIS_DIM, npoints = misc.DEF_ELL_NP, \
        level = misc.DEF_LEVEL):
    """Given a mean and covariance for multi-variate
    gaussian, returns the coordinates of the confidense ellipsoid.
    
    Compute npoints coordinates for the ellipse of confidence of given level
    (all points will be inside the ellipsoides with a probability equal to
    level).
    
    :Parameters:
        mu : ndarray
            mean of the pdf
        va : ndarray
            variance of the pdf
        dim : sequence
            sequences of two integers which represent the dimensions where to
            project the ellipsoid.
        npoints: int
            number of points to generate for the ellipse.
        level : float
            level of confidence (between 0 and 1).

    :Returns:
        Returns the coordinate x and y of the ellipse."""
    if level >= 1 or level <= 0:
        raise ValueError("level should be a scale strictly between 0 and 1.""")
    
    mu = N.atleast_1d(mu)
    va = N.atleast_1d(va)
    d = N.shape(mu)[0]
    c = N.array(dim)

    if N.any(c < 0) or N.any(c >= d):
        raise ValueError("dim elements should be >= 0 and < %d (dimension"\
                " of the variance)" % d)
    if N.size(mu) == N.size(va):
        mode    = 'diag'
    else:
        if N.ndim(va) == 2:
            if N.shape(va)[0] == N.shape(va)[1]:
                mode    = 'full'
            else:
                raise DenError("variance not square")
        else:
            raise DenError("mean and variance are not dim conformant")

    # When X is a sample from multivariante N(mu, sigma), (X-mu)Sigma^-1(X-mu)
    # follows a Chi2(d) law. Here, we only take 2 dimension, so Chi2 with 2
    # degree of freedom (See Wasserman. This is easy to see with characteristic
    # functions)
    chi22d  = chi2(2)
    mahal   = N.sqrt(chi22d.ppf(level))
    
    # Generates a circle of npoints
    theta   = N.linspace(0, 2 * N.pi, npoints)
    circle  = mahal * N.array([N.cos(theta), N.sin(theta)])

    # Get the dimension which we are interested in:
    mu  = mu[c]
    if mode == 'diag':
        va      = va[c]
        elps    = N.outer(mu, N.ones(npoints))
        elps    += N.dot(N.diag(N.sqrt(va)), circle)
    elif mode == 'full':
        va  = va[c, :][:, c]
        # Method: compute the cholesky decomp of each cov matrix, that is
        # compute cova such as va = cova * cova' 
        # WARN: scipy is different than matlab here, as scipy computes a lower
        # triangular cholesky decomp: 
        #   - va = cova * cova' (scipy)
        #   - va = cova' * cova (matlab)
        # So take care when comparing results with matlab !
        cova    = lin.cholesky(va)
        elps    = N.outer(mu, N.ones(npoints))
        elps    += N.dot(cova, circle)
    else:
        raise ValueError("var mode not recognized")

    return elps[0, :], elps[1, :]

def logsumexp(x):
    """Compute log(sum(exp(x), 1)) while avoiding underflow.
    
    :Parameters:
        x : ndarray
            data in log domain to sum"""
    axis = 1
    mc = N.max(x, axis)
    return mc + N.log(N.sum(N.exp(x-mc[:, N.newaxis]), axis))

def multiple_gauss_den(data, mu, va, log = False):
    """Helper function to generate several Gaussian
    pdf (different parameters) at the same points

    :Parameters:
        data : ndarray
            points where to estimate the pdfs (n,d).
        mu : ndarray
            mean of the pdf, of shape (k,d). One row of dimension d per
            different component, the number of rows k being the number of
            component
        va : ndarray
            variance of the pdf. One row per different component for diagonal
            covariance (k, d), or d rows per component for full matrix pdf
            (k*d,d).
        log : boolean
            if True, returns the log-pdf instead of the pdf.

    :Returns:
        Returns a (n, k) array, each column i being the pdf of the ith mean and
        ith variance."""
    mu = N.atleast_2d(mu)
    va = N.atleast_2d(va)

    k = N.shape(mu)[0]
    n = N.shape(data)[0]
    d = N.shape(mu)[1]
    
    y = N.zeros((k, n))
    if N.size(mu) == N.size(va):
        for i in range(k):
            y[i] = gauss_den(data, mu[i, :], va[i, :], log)
        return y.T
    else:
        for i in range(k):
            y[i] = gauss_den(data, mu[i, :], va[d*i:d*i+d, :], log)
        return y.T

if __name__ == "__main__":
    pass