1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
|
# /usr/bin/python
# Last Change: Mon Jul 02 07:00 PM 2007 J
"""Module implementing GMM, a class to estimate Gaussian mixture models using
EM, and EM, a class which use GMM instances to estimate models parameters using
the ExpectationMaximization algorithm."""
__docformat__ = 'restructuredtext'
# TODO:
# - which methods to avoid va shrinking to 0 ? There are several options,
# not sure which ones are appropriates
# - improve EM trainer
import numpy as N
from numpy.random import randn
#import _c_densities as densities
import densities
from scipy.cluster.vq import kmeans2 as kmean
from gauss_mix import GmParamError
from misc import curry
#from misc import _DEF_ALPHA, _MIN_DBL_DELTA, _MIN_INV_COND
_PRIOR_COUNT = 0.05
_COV_PRIOR = 0.1
# Error classes
class GmmError(Exception):
"""Base class for exceptions in this module."""
def __init__(self):
Exception.__init__(self)
class GmmParamError(GmmError):
"""Exception raised for errors in gmm params
Attributes:
expression -- input expression in which the error occurred
message -- explanation of the error
"""
def __init__(self, message):
GmmError.__init__(self)
self.message = message
def __str__(self):
return self.message
class MixtureModel(object):
"""Class to model mixture """
# XXX: Is this really needed ?
pass
class ExpMixtureModel(MixtureModel):
"""Class to model mixture of exponential pdf (eg Gaussian, exponential,
Laplace, etc..). This is a special case because some parts of EM are common
for those models..."""
pass
class GMM(ExpMixtureModel):
""" A class to model a Gaussian Mixture Model (GMM). An instance of this
class is created by giving weights, mean and variances in the ctor. An
instanciated object can be sampled, trained by EM. """
def init_kmean(self, data, niter = 5):
""" Init the model with kmean."""
k = self.gm.k
d = self.gm.d
init = data[0:k, :]
# XXX: This is bogus initialization should do better (in kmean with CV)
(code, label) = kmean(data, init, niter, minit = 'matrix')
w = N.ones(k) / k
mu = code.copy()
if self.gm.mode == 'diag':
va = N.zeros((k, d))
for i in range(k):
for j in range(d):
va[i, j] = N.cov(data[N.where(label==i), j], rowvar = 0)
elif self.gm.mode == 'full':
va = N.zeros((k*d, d))
for i in range(k):
va[i*d:i*d+d, :] = \
N.cov(data[N.where(label==i)], rowvar = 0)
else:
raise GmmParamError("mode " + str(self.gm.mode) + \
" not recognized")
self.gm.set_param(w, mu, va)
self.isinit = True
def init_random(self, data):
""" Init the model at random."""
k = self.gm.k
d = self.gm.d
w = N.ones(k) / k
mu = randn(k, d)
if self.gm.mode == 'diag':
va = N.fabs(randn(k, d))
else:
# If A is invertible, A'A is positive definite
va = randn(k * d, d)
for i in range(k):
va[i*d:i*d+d] = N.dot( va[i*d:i*d+d],
va[i*d:i*d+d].T)
self.gm.set_param(w, mu, va)
self.isinit = True
def init_test(self, data):
"""Use values already in the model as initialization.
Useful for testing purpose when reproducability is necessary. This does
nothing but checking that the mixture model has valid initial
values."""
try:
self.gm.check_state()
except GmParamError, e:
print "Model is not properly initalized, cannot init EM."
raise ValueError("Message was %s" % str(e))
def __init__(self, gm, init = 'kmean'):
"""Initialize a mixture model.
Initialize the model from a GM instance. This class implements all the
necessary functionalities for EM.
:Parameters:
gm : GM
the mixture model to train.
init : string
initialization method to use."""
self.gm = gm
# Possible init methods
init_methods = {'kmean': self.init_kmean, 'random' : self.init_random,
'test': self.init_test}
if init not in init_methods:
raise GmmParamError('init method %s not recognized' + str(init))
self.init = init_methods[init]
self.isinit = False
self.initst = init
def compute_responsabilities(self, data):
"""Compute responsabilities.
Return normalized and non-normalized respondabilities for the model.
Note
----
Computes the latent variable distribution (a posteriori probability)
knowing the explicit data for the Gaussian model (w, mu, var): gamma(t,
i) = P[state = i | observation = data(t); w, mu, va]
This is basically the E step of EM for finite mixtures."""
# compute the gaussian pdf
tgd = densities.multiple_gauss_den(data, self.gm.mu, self.gm.va)
# multiply by the weight
tgd *= self.gm.w
# Normalize to get a pdf
gd = tgd / N.sum(tgd, axis=1)[:, N.newaxis]
return gd, tgd
def compute_log_responsabilities(self, data):
"""Compute log responsabilities.
Return normalized and non-normalized responsabilities for the model (in
the log domain)
Note
----
Computes the latent variable distribution (a posteriori probability)
knowing the explicit data for the Gaussian model (w, mu, var): gamma(t,
i) = P[state = i | observation = data(t); w, mu, va]
This is basically the E step of EM for finite mixtures."""
# compute the gaussian pdf
tgd = densities.multiple_gauss_den(data, self.gm.mu,
self.gm.va, log = True)
# multiply by the weight
tgd += N.log(self.gm.w)
# Normalize to get a (log) pdf
gd = tgd - densities.logsumexp(tgd)[:, N.newaxis]
return gd, tgd
def _update_em_diag(self, data, gamma, ngamma):
"""Computes update of the Gaussian Mixture Model (M step) from the
responsabilities gamma and normalized responsabilities ngamma, for
diagonal models."""
#XXX: caching SS may decrease memory consumption, but is this possible ?
k = self.gm.k
d = self.gm.d
n = data.shape[0]
invn = 1.0/n
mu = N.zeros((k, d))
va = N.zeros((k, d))
for c in range(k):
x = N.dot(gamma.T[c:c+1, :], data)[0, :]
xx = N.dot(gamma.T[c:c+1, :], data ** 2)[0, :]
mu[c, :] = x / ngamma[c]
va[c, :] = xx / ngamma[c] - mu[c, :] ** 2
w = invn * ngamma
return w, mu, va
def _update_em_full(self, data, gamma, ngamma):
"""Computes update of the Gaussian Mixture Model (M step) from the
responsabilities gamma and normalized responsabilities ngamma, for
full models."""
k = self.gm.k
d = self.gm.d
n = data.shape[0]
invn = 1.0/n
# In full mode, this is the bottleneck: the triple loop
# kills performances. This is pretty straightforward
# algebra, so computing it in C should not be too difficult. The
# real problem is to have valid covariance matrices, and to keep
# them positive definite, maybe with special storage... Not sure
# it really worth the risk
mu = N.zeros((k, d))
va = N.zeros((k*d, d))
#XXX: caching SS may decrease memory consumption
for c in range(k):
#x = N.sum(N.outer(gamma[:, c],
# N.ones((1, d))) * data, axis = 0)
x = N.dot(gamma.T[c:c+1, :], data)[0, :]
xx = N.zeros((d, d))
# This should be much faster than recursing on n...
for i in range(d):
for j in range(d):
xx[i, j] = N.sum(data[:, i] * data[:, j] * gamma.T[c, :],
axis = 0)
mu[c, :] = x / ngamma[c]
va[c*d:c*d+d, :] = xx / ngamma[c] \
- N.outer(mu[c, :], mu[c, :])
w = invn * ngamma
return w, mu, va
def update_em(self, data, gamma):
"""Computes update of the Gaussian Mixture Model (M step)
from the a posteriori pdf, computed by gmm_posterior
(E step).
"""
ngamma = N.sum(gamma, axis = 0)
if self.gm.mode == 'diag':
w, mu, va = self._update_em_diag(data, gamma, ngamma)
elif self.gm.mode == 'full':
w, mu, va = self._update_em_full(data, gamma, ngamma)
else:
raise GmmParamError("varmode not recognized")
self.gm.set_param(w, mu, va)
def likelihood(self, data):
""" Returns the current log likelihood of the model given
the data """
assert(self.isinit)
# compute the gaussian pdf
tgd = densities.multiple_gauss_den(data, self.gm.mu, self.gm.va)
# multiply by the weight
tgd *= self.gm.w
return N.sum(N.log(N.sum(tgd, axis = 1)), axis = 0)
def bic(self, data):
""" Returns the BIC (Bayesian Information Criterion),
also called Schwarz information criterion. Can be used
to choose between different models which have different
number of clusters. The BIC is defined as:
BIC = 2 * ln(L) - k * ln(n)
where:
* ln(L) is the log-likelihood of the estimated model
* k is the number of degrees of freedom
* n is the number of frames
Not that depending on the literature, BIC may be defined as the opposite
of the definition given here. """
if self.gm.mode == 'diag':
# for a diagonal model, we have k - 1 (k weigths, but one
# constraint of normality) + k * d (means) + k * d (variances)
free_deg = self.gm.k * (self.gm.d * 2 + 1) - 1
elif self.gm.mode == 'full':
# for a full model, we have k - 1 (k weigths, but one constraint of
# normality) + k * d (means) + k * d * d / 2 (each covariance
# matrice has d **2 params, but with positivity constraint)
if self.gm.d == 1:
free_deg = self.gm.k * 3 - 1
else:
free_deg = self.gm.k * (self.gm.d + 1 + self.gm.d ** 2 / 2) - 1
lk = self.likelihood(data)
n = N.shape(data)[0]
return bic(lk, free_deg, n)
# syntactic sugar
def __repr__(self):
repre = ""
repre += "Gaussian Mixture Model\n"
repre += " -> initialized by %s\n" % str(self.initst)
repre += self.gm.__repr__()
return repre
class EM:
"""An EM trainer. An EM trainer
trains from data, with a model
Not really useful yet"""
def __init__(self):
pass
def train(self, data, model, maxiter = 10, thresh = 1e-5, log = False):
"""Train a model using EM.
Train a model using data, and stops when the likelihood increase
between two consecutive iteration fails behind a threshold, or when the
number of iterations > niter, whichever comes first
:Parameters:
data : ndarray
contains the observed features, one row is one frame, ie one
observation of dimension d
model : GMM
GMM instance.
maxiter : int
maximum number of iterations
thresh : threshold
if the slope of the likelihood falls below this value, the
algorithm stops.
:Returns:
likelihood : ndarray
one value per iteration.
Note
----
The model is trained, and its parameters updated accordingly, eg the
results are put in the GMM instance.
"""
if not isinstance(model, MixtureModel):
raise TypeError("expect a MixtureModel as a model")
# Initialize the data (may do nothing depending on the model)
model.init(data)
# Actual training
if log:
like = self._train_simple_em_log(data, model, maxiter, thresh)
else:
like = self._train_simple_em(data, model, maxiter, thresh)
return like
def _train_simple_em(self, data, model, maxiter, thresh):
# Likelihood is kept
like = N.zeros(maxiter)
# Em computation, with computation of the likelihood
g, tgd = model.compute_responsabilities(data)
# TODO: do it in log domain instead
like[0] = N.sum(N.log(N.sum(tgd, 1)), axis = 0)
model.update_em(data, g)
for i in range(1, maxiter):
g, tgd = model.compute_responsabilities(data)
like[i] = N.sum(N.log(N.sum(tgd, 1)), axis = 0)
model.update_em(data, g)
if has_em_converged(like[i], like[i-1], thresh):
return like[0:i]
def _train_simple_em_log(self, data, model, maxiter, thresh):
# Likelihood is kept
like = N.zeros(maxiter)
# Em computation, with computation of the likelihood
g, tgd = model.compute_log_responsabilities(data)
like[0] = N.sum(densities.logsumexp(tgd), axis = 0)
model.update_em(data, N.exp(g))
for i in range(1, maxiter):
g, tgd = model.compute_log_responsabilities(data)
like[i] = N.sum(densities.logsumexp(tgd), axis = 0)
model.update_em(data, N.exp(g))
if has_em_converged(like[i], like[i-1], thresh):
return like[0:i]
class RegularizedEM:
# TODO: separate regularizer from EM class ?
def __init__(self, pcnt = _PRIOR_COUNT, pval = _COV_PRIOR):
"""Create a regularized EM object.
Covariances matrices are regularized after the E step.
:Parameters:
pcnt : float
proportion of soft counts to be count as prior counts (e.g. if
you have 1000 samples and the prior_count is 0.1, than the
prior would "weight" 100 samples).
pval : float
value of the prior.
"""
self.pcnt = pcnt
self.pval = pval
def train(self, data, model, maxiter = 20, thresh = 1e-5):
"""Train a model using EM.
Train a model using data, and stops when the likelihood increase
between two consecutive iteration fails behind a threshold, or when the
number of iterations > niter, whichever comes first
:Parameters:
data : ndarray
contains the observed features, one row is one frame, ie one
observation of dimension d
model : GMM
GMM instance.
maxiter : int
maximum number of iterations
thresh : threshold
if the slope of the likelihood falls below this value, the
algorithm stops.
:Returns:
likelihood : ndarray
one value per iteration.
Note
----
The model is trained, and its parameters updated accordingly, eg the
results are put in the GMM instance.
"""
mode = model.gm.mode
# Build regularizer
if mode == 'diag':
regularize = curry(regularize_diag, np = self.pcnt, prior =
self.pval * N.ones(model.gm.d))
elif mode == 'full':
regularize = curry(regularize_full, np = self.pcnt, prior =
self.pval * N.eye(model.gm.d))
else:
raise ValueError("unknown variance mode")
model.init(data)
regularize(model.gm.va)
# Likelihood is kept
like = N.empty(maxiter, N.float)
# Em computation, with computation of the likelihood
g, tgd = model.compute_log_responsabilities(data)
g = N.exp(g)
model.update_em(data, g)
regularize(model.gm.va)
like[0] = N.sum(densities.logsumexp(tgd), axis = 0)
for i in range(1, maxiter):
g, tgd = model.compute_log_responsabilities(data)
g = N.exp(g)
model.update_em(data, g)
regularize(model.gm.va)
like[i] = N.sum(densities.logsumexp(tgd), axis = 0)
if has_em_converged(like[i], like[i-1], thresh):
return like[0:i]
# Misc functions
def bic(lk, deg, n):
""" Expects lk to be log likelihood """
return 2 * lk - deg * N.log(n)
def has_em_converged(like, plike, thresh):
""" given likelihood of current iteration like and previous
iteration plike, returns true is converged: based on comparison
of the slope of the likehood with thresh"""
diff = N.abs(like - plike)
avg = 0.5 * (N.abs(like) + N.abs(plike))
if diff / avg < thresh:
return True
else:
return False
def regularize_diag(va, np, prior):
"""np * n is the number of prior counts (np is a proportion, and n is the
number of point).
diagonal variance version"""
k = va.shape[0]
for i in range(k):
va[i] *= 1. / (1 + np)
va[i] += np / (1. + np) * prior
def regularize_full(va, np, prior):
"""np * n is the number of prior counts (np is a proportion, and n is the
number of point)."""
d = va.shape[1]
k = va.shape[0] / d
for i in range(k):
va[i*d:i*d+d, :] *= 1. / (1 + np)
va[i*d:i*d+d, :] += np / (1. + np) * prior
if __name__ == "__main__":
pass
|