1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
|
# pylint: disable-msg=E1101
"""
Wrapper to lowess, loess and stl routines, with support for masked arrays.
LOWESS:
Initial Fortran code available at:
http://netlib.bell-labs.com/netlib/go/lowess.f.gz
initial author: W. S. Cleveland, 1979.
Simple to double precision conversion of the Fortran code by Pierre
Gerard-Marchant, 2007/03.
STL:
Initial Fortran code available at:
http://netlib.bell-labs.com/netlib/a/stl.gz
Initial Authors: R. B. Cleveland, W. S. Cleveland, J. E. McRae, and
I. Terpenning, 1990.
Simple-to-double precision conversion of the Fortran code by Pierre
Gerard-Marchant, 2007/03.
LOESS:
Initial C/Fortran package avialable at
http://netlib.bell-labs.com/netlib/a/dloess.gz
Initial authors: W. S. Cleveland, E. Grosse and Shyu
Adaptation to Pyrex/Python by Pierre Gerard-Marchant, 2007/03
:author: Pierre GF Gerard-Marchant
:contact: pierregm_at_uga_edu
:date: $Date: 2007-03-26 23:38:36 -0700 (Mon, 26 Mar 2007) $
:version: $Id: mpyloess.py 2874 2007-03-27 06:38:36Z pierregm $
"""
__author__ = "Pierre GF Gerard-Marchant ($Author: pierregm $)"
__version__ = '1.0'
__revision__ = "$Revision: 2874 $"
__date__ = '$Date: 2007-03-26 23:38:36 -0700 (Mon, 26 Mar 2007) $'
import numpy
from numpy import bool_, complex_, float_, int_, str_, object_
import numpy.core.numeric as numeric
from numpy.core.records import recarray
narray = numeric.array
nempty = numeric.empty
nlogical_not = numpy.logical_not
import maskedarray.core
from maskedarray.core import masked, nomask, mask_or
from maskedarray.core import masked_array as marray
import _lowess, _stl, _mloess
#####---------------------------------------------------------------------------
#--- --- STL ---
#####---------------------------------------------------------------------------
class lowess:
"""An object for robust locally weighted regression.
:IVariables:
inputs :
parameters :
outputs :
Method
------
The fitted values are computed by using the nearest neighbor
routine and robust locally weighted regression of degree 1
with the tricube weight function. A few additional features
have been added. Suppose r is FN truncated to an integer.
Let h be the distance to the r-th nearest neighbor
from X[i]. All points within h of X[i] are used. Thus if
the r-th nearest neighbor is exactly the same distance as
other points, more than r points can possibly be used for
the smooth at X[i]. There are two cases where robust
locally weighted regression of degree 0 is actually used at
X[i]. One case occurs when h is 0.0. The second case
occurs when the weighted standard error of the X[i] with
respect to the weights w[j] is less than .001 times the
range of the X[i], where w[j] is the weight assigned to the
j-th point of X (the tricube weight times the robustness
weight) divided by the sum of all of the weights. Finally,
if the w[j] are all zero for the smooth at X[i], the fitted
value is taken to be Y[i].
References
----------
W. S. Cleveland. 1978. Visual and Computational Considerations in
Smoothing Scatterplots by Locally Weighted Regression. In
Computer Science and Statistics: Eleventh Annual Symposium on the
Interface, pages 96-100. Institute of Statistics, North Carolina
State University, Raleigh, North Carolina, 1978.
W. S. Cleveland, 1979. Robust Locally Weighted Regression and
Smoothing Scatterplots. Journal of the American Statistical
Association, 74:829-836, 1979.
W. S. Cleveland, 1981. LOWESS: A Program for Smoothing Scatterplots
by Robust Locally Weighted Regression. The American Statistician,
35:54.
"""
#............................................
class _inputs(object):
"""Inputs of the lowess fit.
:IVariables:
x : ndarray
A (n,) float ndarray of observations (sorted by increasing values).
y : ndarray
A (n,) float ndarray of responses (sorted by increasing x).
"""
def __init__(self, x, y):
x = marray(x, copy=False, subok=True, dtype=float_, order='F').ravel()
y = marray(y, copy=False, subok=True, dtype=float_, order='F').ravel()
if x.size != y.size:
msg = "Incompatible size between observations (%s) and response (%s)!"
raise ValueError(msg % (x.size, y.size))
idx = x.argsort()
self._x = x[idx]
self._y = y[idx]
self._mask = mask_or(self._x._mask, self._y._mask,
copy=False, small_mask=False)
#.....
x = property(fget=lambda self:self._x)
y = property(fget=lambda self:self._y)
#............................................
class _parameters(object):
"""Parameters of the lowess fit.
:IVariables:
span : float *[0.5]*
Fraction of the total number of points used to compute each fitted value.
As f increases the smoothed values become smoother. Choosing f in the range
.2 to .8 usually results in a good fit.
nsteps : integer *[2]*
Number of iterations in the robust fit. If nsteps=0, the nonrobust fit
is returned; setting nsteps=2 should serve most purposes.
delta : integer *[0]*
Nonnegative parameter which may be used to save computations.
If N (the number of observations) is less than 100, set delta=0.0;
if N is greater than 100 you should find out how delta works by reading
the additional instructions section.
"""
def __init__(self, span, nsteps, delta, caller):
self.activated = False
self._span = span
self._nsteps = nsteps
self._delta = delta
self._caller = caller
#.....
def _get_span(self):
"Gets the current span."
return self._span
def _set_span(self, span):
"Sets the current span, and refit if needed."
if span <= 0 or span > 1:
raise ValueError("span should be between zero and one!")
self._span = span
if self.activated:
self._caller.fit()
span = property(fget=_get_span, fset=_set_span)
#.....
def _get_nsteps(self):
"Gets the current number of iterations."
return self._nsteps
def _set_nsteps(self, nsteps):
"Sets the current number of iterations, and refit if needed."
if nsteps < 0:
raise ValueError("nsteps should be positive!")
self._nsteps = nsteps
if self.activated:
self._caller.fit()
nsteps = property(fget=_get_nsteps, fset=_set_nsteps)
#.....
def _get_delta(self):
"Gets the current delta."
return self._delta
def _set_delta(self, delta):
"Sets the current delta, and refit if needed."
if delta < 0:
raise ValueError("delta should be positive!")
self._delta = delta
if self.activated:
self._caller.fit()
delta = property(fget=_get_delta, fset=_set_delta)
#............................................
class _outputs(object):
"""Outputs of the lowess fit.
:IVariables:
fitted_values : ndarray
A (n,) ndarray of fitted values (readonly).
fitted_residuals : ndarray
A (n,) ndarray of residuals (readonly).
weights : ndarray
A (n,) ndarray of robust weights (readonly).
"""
def __init__(self, n):
self._fval = marray(nempty((n,), dtype=float_, order='F'))
self._rw = marray(nempty((n,), dtype=float_, order='F'))
self._fres = marray(nempty((n,), dtype=float_, order='F'))
#.....
fitted_values = property(fget=lambda self:self._fval)
robust_weights = property(fget=lambda self:self._rw)
fitted_residuals = property(fget=lambda self:self._fres)
#............................................
def __init__(self, x, y, span=0.5, nsteps=2, delta=0):
"""
:Parameters:
x : ndarray
Abscissas of the points on the scatterplot; the values in X must be
ordered from smallest to largest.
y : ndarray
Ordinates of the points on the scatterplot.
span : Float *[0.5]*
Fraction of the total number of points used to compute each fitted value.
As span increases the smoothed values become smoother. Choosing span in
the range .2 to .8 usually results in a good fit.
nsteps : Integer *[2]*
Number of iterations in the robust fit. If nsteps=0, the nonrobust fit
is returned; setting nsteps=2 should serve most purposes.
delta : Integer *[0]*
Nonnegative parameter which may be used to save computations.
If N (the number of elements in x) is less than 100, set delta=0.0;
if N is greater than 100 you should find out how delta works by reading
the additional instructions section.
"""
# Chek the input data .........
# Initialize the attributes ...
self.inputs = lowess._inputs(x,y)
self.parameters = lowess._parameters(span, nsteps, delta, self)
self.outputs = self._outputs(self.inputs._x.size)
# Force a fit .................
self.fit()
#............................................
def fit(self):
# Check the mask .........
mask = self.inputs._mask
if mask.any():
unmask = nlogical_not(mask)
(x, y) = (self.inputs._x[unmask], self.inputs._y[unmask])
else:
unmask = slice(None,None)
(x, y) = (self.inputs._x, self.inputs._y)
# Get the parameters .....
self.parameters.activated = True
f = self.parameters._span
nsteps = self.parameters._nsteps
delta = self.parameters._delta
(tmp_s, tmp_w, tmp_r) = _lowess.lowess(x, y, f, nsteps, delta)
# Process the outputs .....
#... set the values
self.outputs._fval[unmask] = tmp_s[:]
self.outputs._rw[unmask] = tmp_w[:]
self.outputs._fres[unmask] = tmp_r[:]
#... set the masks
self.outputs._fval._set_mask(mask)
self.outputs._rw._set_mask(mask)
self.outputs._fres._set_mask(mask)
# Clean up the mess .......
del(tmp_s, tmp_w, tmp_r)
return self.outputs
#####---------------------------------------------------------------------------
#--- --- STL ---
#####---------------------------------------------------------------------------
class stl:
class _inputs:
def __init__(self, y):
self.y = marray(y, subok=True, copy=False).ravel()
self._mask = self.y._mask
if self._mask.any():
raise ValueError("Masked arrays should be filled first!")
self.y_eff = self.y.compressed()
#............................................
class _model(object):
"""Model parameters of the STL fit.
:IVariables:
np : Integer *[12]*
Period of the seasonal component.
For example, if the time series is monthly with a yearly cycle, then
np=12.
ns : Integer *[7]*
Length of the seasonal smoother.
The value of ns should be an odd integer greater than or equal to 3.
A value ns>6 is recommended. As ns increases the values of the
seasonal component at a given point in the seasonal cycle (e.g., January
values of a monthly series with a yearly cycle) become smoother.
nt : Integer *[None]*
Length of the trend smoother.
The value of nt should be an odd integer greater than or equal to 3.
A value of nt between 1.5*np and 2*np is recommended. As nt increases,
the values of the trend component become smoother.
If nt is None, it is estimated as the smallest odd integer greater
or equal to (1.5*np)/[1-(1.5/ns)]
nl : Integer *[None]*
Length of the low-pass filter.
The value of nl should be an odd integer greater than or equal to 3.
The smallest odd integer greater than or equal to np is used by default.
isdeg : Integer *[1]*
Degree of locally-fitted polynomial in seasonal smoothing.
The value is 0 or 1.
itdeg : Integer *[1]*
Degree of locally-fitted polynomial in trend smoothing.
The value is 0 or 1.
ildeg : Integer *[1]*
Degree of locally-fitted polynomial in low-pass smoothing.
The value is 0 or 1.
"""
def __init__(self,
np=12, ns=7, nt=None, nl=13,
isdeg=1, itdeg=1, ildeg=1, caller=None):
self._np = np
self._ns = ns
#
self._nt = nt
if nt is None:
self._nt = max(int((1.5*np/(1.-1.5/ns))+0.5), 3)
else:
self._nt = nt
if not self._nt % 2:
self._nt += 1
#
if nl is None:
self._nl = max(np, 3)
else:
self._nl = nl
if not self._nl % 2:
self._nl += 1
#
self._isdeg = isdeg
self._itdeg = itdeg
self._ildeg = ildeg
self.activated = False
self.caller = caller
#.....
def _get_np(self):
"Gets the current seasonal period."
return self._np
def _set_np(self, np):
"Sets the current seasonal period."
self._np = max(np,2)
if self.activated:
self.caller.fit()
np = property(fget=_get_np, fset=_set_np)
#.....
def _get_ns(self):
"Gets the length of the seasonal smoother."
return self._ns
def _set_ns(self, ns):
"Sets the length of the seasonal smoother."
self._ns = max(ns, 3)
if self._ns %2 == 0:
self._ns += 1
if self.activated:
self.caller.fit()
ns = property(fget=_get_ns, fset=_set_ns)
#.....
def _get_nt(self):
"Gets the length of the trend smoother."
return self._nt
def _set_nt(self, nt):
"Sets the length of the trend smoother."
self._nt = nt
if self.activated:
self.caller.fit()
nt = property(fget=_get_nt, fset=_set_nt)
#.....
def _get_nl(self):
"Gets the length of the trend smoother."
return self._nl
def _set_nl(self, nl):
"Sets the length of the trend smoother."
self._nl = nl
if self.activated:
self.caller.fit()
nl = property(fget=_get_nl, fset=_set_nl)
#.....
def _get_isdeg(self):
"Gets the degree of the seasonal smoother."
return self._isdeg
def _set_isdeg(self, isdeg):
"Sets the degree of the seasonal smoother."
if isdeg > 2 or isdeg < 0:
raise ValueError("The degree of the seasonal smoother should be 1 or 0.")
self._isdeg = int(isdeg)
if self.activated:
self.caller.fit()
isdeg = property(fget=_get_isdeg, fset=_set_isdeg)
#.....
def _get_itdeg(self):
"Gets the degree of the trend smoother."
return self._itdeg
def _set_itdeg(self, itdeg):
"Sets the degree of the trend smoother."
if itdeg > 2 or itdeg < 0:
raise ValueError("The degree of the trend smoother should be 1 or 0.")
self._itdeg = int(itdeg)
if self.activated:
self.caller.fit()
itdeg = property(fget=_get_itdeg, fset=_set_itdeg)
#.....
def _get_ildeg(self):
"Gets the degree of the low-pass smoother."
return self._ildeg
def _set_ildeg(self, ildeg):
"Sets the degree of the low-pass smoother."
if ildeg > 2 or ildeg < 0:
raise ValueError("The degree of the low-pass smoother should be 1 or 0.")
self._ildeg = int(ildeg)
if self.activated:
self.caller.fit()
ildeg = property(fget=_get_ildeg, fset=_set_ildeg)
#............................................
class _control(object):
"""Control parameters of the STL fit.
:IVariables:
nsjump : Integer *[None]*
Skipping value for seasonal smoothing.
The seasonal smoother skips ahead nsjump points and then linearly
interpolates in between. The value of nsjump should be a positive
integer; if nsjump=1, a seasonal smooth is calculated at all n points.
To make the procedure run faster, a reasonable choice for nsjump is
10%-20% of ns. By default, nsjump= 0.1*ns.
ntjump : Integer *[1]*
Skipping value for trend smoothing. If None, ntjump= 0.1*nt
nljump : Integer *[1]*
Skipping value for low-pass smoothing. If None, nljump= 0.1*nl
robust : Boolean *[True]*
Flag indicating whether robust fitting should be performed.
ni : Integer *[None]*
Number of loops for updating the seasonal and trend components.
The value of ni should be a positive integer.
See the next argument for advice on the choice of ni.
If ni is None, ni is set to 1 for robust fitting, to 5 otherwise.
no : Integer *[0]*
Number of iterations of robust fitting. The value of no should
be a nonnegative integer. If the data are well behaved without
outliers, then robustness iterations are not needed. In this case
set no=0, and set ni=2 to 5 depending on how much security
you want that the seasonal-trend looping converges.
If outliers are present then no=3 is a very secure value unless
the outliers are radical, in which case no=5 or even 10 might
be better. If no>0 then set ni to 1 or 2.
If None, then no is set to 15 for robust fitting, to 0 otherwise.
"""
def __init__(self,
nsjump=None,ntjump=None,nljump=None,
robust=True, ni=None,no=None, caller=None):
(self._nsjump, self._ntjump, self._nljump) = (nsjump, ntjump, nljump)
#...
if robust:
if ni is None:
ni = 1
if no is None:
no = 15
else:
if ni is None:
ni = 5
if no is None:
no = 0
(self._robust, self._ni, self._no) = (robust, ni, no)
#...
self.activated = False
self.caller = caller
#....
def _get_nsjump(self):
"Gets the skipping value for seasonal smoothing."
return self._nsjump
def _set_nsjump(self, nsjump):
"Sets the skipping value for seasonal smoothing."
self._nsjump = nsjump
if self.activated:
self.caller.fit()
nsjump = property(fget=_get_nsjump, fset=_set_nsjump)
#....
def _get_ntjump(self):
"Gets the skipping value for trend smoothing."
return self._ntjump
def _set_ntjump(self, ntjump):
"Sets the skipping value for trend smoothing."
self._ntjump = ntjump
if self.activated:
self.caller.fit()
ntjump = property(fget=_get_ntjump, fset=_set_ntjump)
#....
def _get_nljump(self):
"Gets the skipping value for low-pass smoothing."
return self._nljump
def _set_nljump(self, nljump):
"Set the skipping value for low-pass smoothings"
self._nljump = nljump
if self.activated:
self.caller.fit()
nljump = property(fget=_get_nljump, fset=_set_nljump)
#....
def _get_robust(self):
"Gets whether robust fitting should be performed."
return self._robust
def _set_robust(self, robust):
"Sets whether robust fitting should be performed."
self._robust = robust
if self.activated:
self.caller.fit()
robust = property(fget=_get_robust, fset=_set_robust)
#....
def _get_ni(self):
"Gets the number of loops."
return self._ni
def _set_ni(self, ni):
"Sets the number of loops."
if ni < 0:
raise ValueError("The number of loops should be positive!")
self._ni = ni
if self.activated:
self.caller.fit()
ni = property(fget=_get_ni, fset=_set_ni)
#....
def _get_no(self):
"Gets the number of iterations for robust fitting."
return self._no
def _set_no(self, no):
"Sets the number of iterations for robust fitting."
if no < 0 :
raise ValueError("The number of iterations should be positive!")
self._no = no
if self.activated:
self.caller.fit()
no = property(fget=_get_no, fset=_set_no)
#............................................
class _outputs(object):
"""Outputs of the STL fit.
:IVariables:
seasonal : ndarray
Seasonal fitted values.
trend : ndarray
Trend fitted values.
residuals : ndarray
Fitted residuals.
weights : ndarray
Local robust weights. The final local robust weights are all 1 if no=0.
"""
def __init__(self, n):
self._seasonal = marray(nempty((n,), float_))
self._trend = marray(nempty((n,), float_))
self._weights = marray(nempty((n,), float_))
self._residuals = marray(nempty((n,), float_))
#.....
seasonal = property(fget=lambda self:self._seasonal)
trend = property(fget=lambda self:self._trend)
weights = property(fget=lambda self:self._weights)
residuals = property(fget=lambda self:self._residuals)
#.............................................
def __init__(self, y, **options):
"""Decomposes a time series into seasonal and trend components.
:Parameters:
y : ndarray
Time series to be decomposed.
np : Integer *[12]*
Period of the seasonal component.
For example, if the time series is monthly with a yearly cycle, then
np=12.
ns : Integer *[7]*
Length of the seasonal smoother.
The value of ns should be an odd integer greater than or equal to 3.
A value ns>6 is recommended. As ns increases the values of the
seasonal component at a given point in the seasonal cycle (e.g., January
values of a monthly series with a yearly cycle) become smoother.
nt : Integer *[None]*
Length of the trend smoother.
The value of nt should be an odd integer greater than or equal to 3.
A value of nt between 1.5*np and 2*np is recommended. As nt increases,
the values of the trend component become smoother.
If nt is None, it is estimated as the smallest odd integer greater
or equal to (1.5*np)/[1-(1.5/ns)]
nl : Integer *[None]*
Length of the low-pass filter.
The value of nl should be an odd integer greater than or equal to 3.
The smallest odd integer greater than or equal to np is used by default.
isdeg : Integer *[1]*
Degree of locally-fitted polynomial in seasonal smoothing.
The value is 0 or 1.
itdeg : Integer *[1]*
Degree of locally-fitted polynomial in trend smoothing.
The value is 0 or 1.
ildeg : Integer *[1]*
Degree of locally-fitted polynomial in low-pass smoothing.
The value is 0 or 1.
nsjump : Integer *[None]*
Skipping value for seasonal smoothing.
The seasonal smoother skips ahead nsjump points and then linearly
interpolates in between. The value of nsjump should be a positive
integer; if nsjump=1, a seasonal smooth is calculated at all n points.
To make the procedure run faster, a reasonable choice for nsjump is
10%-20% of ns. By default, nsjump= 0.1*ns.
ntjump : Integer *[1]*
Skipping value for trend smoothing. If None, ntjump= 0.1*nt
nljump : Integer *[1]*
Skipping value for low-pass smoothing. If None, nljump= 0.1*nl
robust : Boolean *[True]*
Flag indicating whether robust fitting should be performed.
ni : Integer *[None]*
Number of loops for updating the seasonal and trend components.
The value of ni should be a positive integer.
See the next argument for advice on the choice of ni.
If ni is None, ni is set to 1 for robust fitting, to 5 otherwise.
no : Integer *[0]*
Number of iterations of robust fitting. The value of no should
be a nonnegative integer. If the data are well behaved without
outliers, then robustness iterations are not needed. In this case
set no=0, and set ni=2 to 5 depending on how much security
you want that the seasonal-trend looping converges.
If outliers are present then no=3 is a very secure value unless
the outliers are radical, in which case no=5 or even 10 might
be better. If no>0 then set ni to 1 or 2.
If None, then no is set to 15 for robust fitting, to 0 otherwise.
"""
self.inputs = stl._inputs(y)
self.model = stl._model(**dict(np=options.get('np',12),
ns=options.get('ns',7),
nt=options.get('nt',None),
nl=options.get('nl',13),
isdeg=options.get('isdeg',1),
itdeg=options.get('itdeg',1),
ildeg=options.get('ildeg',1),
caller=self))
optcontrol = dict(
nsjump=options.get('nsjump',int(0.1*self.model.ns+0.9)),
ntjump=options.get('ntjump',int(0.1*self.model.nt+0.9)),
nljump=options.get('nljump',int(0.1*self.model.nl+0.9)),
robust=options.get('robust',True),
ni=options.get('ni',None),
no=options.get('no',None),)
self.control = stl._control(**optcontrol)
self.outputs = stl._outputs(len(self.inputs.y))
# Force a fit .................
self.fit()
#............................................
def fit(self):
# Get the input ...............
y = self.inputs.y_eff
mask = self.inputs._mask
if mask is nomask:
unmask = slice(None,None)
else:
unmask = nlogical_not(mask)
# Get the parameters ..........
model = self.model
(np, ns, nt, nl) = (model.np, model.ns, model.nt, model.nl)
(isdeg, itdeg, ildeg) = (model.isdeg, model.itdeg, model.ildeg)
control = self.control
(nsjump, ntjump, nljump) = (control.nsjump, control.ntjump, control.nljump)
(ni, no) = (control.ni, control.no)
# Compute the fit .............
(rw,szn,trn,work) = _stl.stl(y,np,ns,nt,nl,isdeg,itdeg,ildeg,
nsjump,ntjump,nljump,ni,no,)
# Process the outputs .....
#... set the values
self.outputs.trend[unmask] = trn.flat
self.outputs.seasonal[unmask] = szn.flat
self.outputs.weights[unmask] = rw.flat
self.outputs.residuals[unmask] = (y-trn-szn)
#... set the masks
self.outputs.trend._set_mask(mask)
self.outputs.seasonal._set_mask(mask)
self.outputs.weights._set_mask(mask)
self.outputs.residuals._set_mask(mask)
# Clean up the mess .......
self.model.activated = self.control.activated = True
del(trn, rw, szn)
return self.outputs
def fstl(y, np=12, ns=7, nt=None, nl=13, isdeg=1, itdeg=1, ildeg=1,
nsjump=None,ntjump=None,nljump=None, robust=True, ni=None,no=None):
"""Decomposes a time series into seasonal and trend components.
:Parameters:
y : Numerical array
Time Series to be decomposed.
np : Integer *[12]*
Period of the seasonal component.
For example, if the time series is monthly with a yearly cycle, then
np=12.
ns : Integer *[7]*
Length of the seasonal smoother.
The value of ns should be an odd integer greater than or equal to 3.
A value ns>6 is recommended. As ns increases the values of the
seasonal component at a given point in the seasonal cycle (e.g., January
values of a monthly series with a yearly cycle) become smoother.
nt : Integer *[None]*
Length of the trend smoother.
The value of nt should be an odd integer greater than or equal to 3.
A value of nt between 1.5*np and 2*np is recommended. As nt increases,
the values of the trend component become smoother.
If nt is None, it is estimated as the smallest odd integer greater
or equal to (1.5*np)/[1-(1.5/ns)]
nl : Integer *[None]*
Length of the low-pass filter.
The value of nl should be an odd integer greater than or equal to 3.
The smallest odd integer greater than or equal to np is used by default.
isdeg : Integer *[1]*
Degree of locally-fitted polynomial in seasonal smoothing.
The value is 0 or 1.
itdeg : Integer *[1]*
Degree of locally-fitted polynomial in trend smoothing.
The value is 0 or 1.
ildeg : Integer *[1]*
Degree of locally-fitted polynomial in low-pass smoothing.
The value is 0 or 1.
nsjump : Integer *[None]*
Skipping value for seasonal smoothing.
The seasonal smoother skips ahead nsjump points and then linearly
interpolates in between. The value of nsjump should be a positive
integer; if nsjump=1, a seasonal smooth is calculated at all n points.
To make the procedure run faster, a reasonable choice for nsjump is
10%-20% of ns. By default, nsjump= 0.1*ns.
ntjump : Integer *[1]*
Skipping value for trend smoothing. If None, ntjump= 0.1*nt
nljump : Integer *[1]*
Skipping value for low-pass smoothing. If None, nljump= 0.1*nl
robust : Boolean *[True]*
Flag indicating whether robust fitting should be performed.
ni : Integer *[None]*
Number of loops for updating the seasonal and trend components.
The value of ni should be a positive integer.
See the next argument for advice on the choice of ni.
If ni is None, ni is set to 1 for robust fitting, to 5 otherwise.
no : Integer *[0]*
Number of iterations of robust fitting. The value of no should
be a nonnegative integer. If the data are well behaved without
outliers, then robustness iterations are not needed. In this case
set no=0, and set ni=2 to 5 depending on how much security
you want that the seasonal-trend looping converges.
If outliers are present then no=3 is a very secure value unless
the outliers are radical, in which case no=5 or even 10 might
be better. If no>0 then set ni to 1 or 2.
If None, then no is set to 15 for robust fitting, to 0 otherwise.
Returns:
A recarray of estimated trend values ('trend'), estimated seasonal
components ('seasonal'), local robust weights ('weights') and fit
residuals ('residuals').
The final local robust weights are all 1 if no=0.
Reference
---------
R. B. Cleveland, W. S. Cleveland, J. E. McRae and I. Terpenning.
1990. STL: A Seasonal-Trend Decomposition Procedure Based on LOESS
(with Discussion). Journal of Official Statistics, 6:3-73.
"""
ns = max(ns, 3)
if ns % 2 == 0:
ns += 1
np = max(2, np)
if nt is None:
nt = max(int((1.5*np/(1.-1.5/ns))+0.5), 3)
if not nt % 2:
nt += 1
if nl is None:
nl = max(3,np)
if not nl % 2:
nl += 1
if nsjump is None:
nsjump = int(0.1*ns + 0.9)
if ntjump is None:
ntjump = int(0.1*nt + 0.9)
if nljump is None:
nljump = int(0.1*nl + 0.9)
if robust:
if ni is None:
ni = 1
if no is None:
no = 15
else:
if ni is None:
ni = 5
if no is None:
no = 0
if hasattr(y,'_mask') and numpy.any(y._mask):
raise ValueError,"Missing values should first be filled !"
y = numeric.array(y, subok=True, copy=False).ravel()
(rw,szn,trn,work) = _stl.stl(y,np,ns,nt,nl,isdeg,itdeg,ildeg,
nsjump,ntjump,nljump,ni,no,)
dtyp = [('trend', float_), ('seasonal', float_),
('residuals', float_), ('weights', float_)]
result = numeric.fromiter(zip(trn,szn,y-trn-szn,rw), dtype=dtyp)
return result.view(recarray)
#####---------------------------------------------------------------------------
#--- --- Loess ---
#####---------------------------------------------------------------------------
loess = _mloess.loess
loess_anova = _mloess.anova
################################################################################
if __name__ == '__main__':
from maskedarray.testutils import assert_almost_equal
from maskedarray import masked_values
from numpy import fromiter
import os
if 1:
NOx = marray([4.818, 2.849, 3.275, 4.691, 4.255, 5.064, 2.118, 4.602,
2.286, 0.970, 3.965, 5.344, 3.834, 1.990, 5.199, 5.283,
-9999, -9999, 3.752, 0.537, 1.640, 5.055, 4.937, 1.561])
NOx = maskedarray.masked_values(NOx, -9999)
E = marray([0.831, 1.045, 1.021, 0.970, 0.825, 0.891, 0.71, 0.801,
1.074, 1.148, 1.000, 0.928, 0.767, 0.701, 0.807, 0.902,
-9999, -9999, 0.997, 1.224, 1.089, 0.973, 0.980, 0.665])
gas_fit_E = numpy.array([0.665, 0.949, 1.224])
newdata = numpy.array([0.6650000, 0.7581667, 0.8513333, 0.9445000,
1.0376667, 1.1308333, 1.2240000])
coverage = 0.99
rfile = open(os.path.join('tests','gas_result'), 'r')
results = []
for i in range(8):
rfile.readline()
z = fromiter((float(v) for v in rfile.readline().rstrip().split()),
float_)
results.append(z)
#
gas = loess(E,NOx)
gas.model.span = 2./3.
gas.fit()
assert_almost_equal(gas.outputs.fitted_values.compressed(), results[0], 6)
assert_almost_equal(gas.outputs.enp, 5.5, 1)
assert_almost_equal(gas.outputs.s, 0.3404, 4)
|