1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
#!/usr/bin/env python
"""rbf - Radial basis functions for interpolation/smoothing scattered Nd data.
Written by John Travers <jtravs@gmail.com>, February 2007
Based closely on Matlab code by Alex Chirokov
Additional, large, improvements by Robert Hetland
Permission to use, modify, and distribute this software is given under the
terms of the SciPy (BSD style) license. See LICENSE.txt that came with
this distribution for specifics.
NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK.
Copyright (c) 2006-2007, Robert Hetland <hetland@tamu.edu>
Copyright (c) 2007, John Travers <jtravs@gmail.com>
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
* Neither the name of Robert Hetland nor the names of any
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
from numpy import sqrt, log, asarray, newaxis, all, dot, float64, eye
import scipy.linalg
class Rbf(object):
""" A class for radial basis function approximation/interpolation of
n-dimensional scattered data.
"""
def _euclidean_norm(self, x1, x2):
return sqrt( ((x1 - x2)**2).sum(axis=0) )
def _function(self, r):
if self.function.lower() == 'multiquadric':
return sqrt((1.0/self.epsilon*r)**2 + 1)
elif self.function.lower() == 'inverse multiquadric':
return 1.0/sqrt((1.0/self.epsilon*r)**2 + 1)
elif self.function.lower() == 'gausian':
return exp(-(self.epsilon*r)**2)
elif self.function.lower() == 'cubic':
return r**3
elif self.function.lower() == 'quintic':
return r**5
elif self.function.lower() == 'thin-plate':
return r**2 * log(r)
else:
raise ValueError, 'Invalid basis function name'
def __init__(self, *args, **kwargs):
""" Constructor for Rbf class.
Inputs:
x, y, z, ..., d
Where x, y, z, ... are the coordinates of the nodes
and d is the array of values at the nodes
function the radial basis function, based on the radius, r, given
by the norm (defult is Euclidean distance); the default
is 'multiquadratic'.
'multiquadric': sqrt((self.epsilon*r)**2 + 1)
'inverse multiquadric': 1.0/sqrt((self.epsilon*r)**2 + 1)
'gausian': exp(-(self.epsilon*r)**2)
'cubic': r**3
'quintic': r**5
'thin-plate': r**2 * log(r)
epsilon adjustable constant for gaussian or multiquadrics
functions - defaults to approximate average distance
between nodes (which is a good start)
smooth values greater than zero increase the smoothness
of the approximation.
0 is for interpolation (default), the function will
always go through the nodal points in this case.
norm A function that returns the 'distance' between two points,
with inputs as arrays of positions (x, y, z, ...), and an
output as an array of distance. E.g, the default is
def euclidean_norm(self, x1, x2):
return sqrt( ((x1 - x2)**2).sum(axis=0) )
which is called with x1 = x1[ndims, newaxis, :] and
x2 = x2[ndims, :, newaxis] such that the result is a
symetric, square matrix of the distances between each point
to each other point.
Outputs:
Interpolator object rbfi that returns interpolated values at new positions:
>>> rbfi = Rbf(x, y, z, d) # radial basis function interpolator instance
>>> di = rbfi(xi, yi, zi) # interpolated values
"""
self.xi = asarray([asarray(a, dtype=float64).flatten() for a in args[:-1]])
self.N = self.xi.shape[-1]
self.di = asarray(args[-1], dtype=float64).flatten()
assert [x.size==self.di.size for x in self.xi], \
'All arrays must be equal length'
self.norm = kwargs.pop('norm', self._euclidean_norm)
r = self._call_norm(self.xi, self.xi)
self.epsilon = kwargs.pop('epsilon', r.mean())
self.function = kwargs.pop('function', 'multiquadric')
self.smooth = kwargs.pop('smooth', 0.0)
self.A = self._function(r) - eye(self.N)*self.smooth
self.nodes = scipy.linalg.solve(self.A, self.di)
def _call_norm(self, x1, x2):
if len(x1.shape) == 1:
x1 = x1[newaxis, :]
if len(x2.shape) == 1:
x2 = x2[newaxis, :]
x1 = x1[..., :, newaxis]
x2 = x2[..., newaxis, :]
return self.norm(x1, x2)
def __call__(self, *args):
assert all([x.shape == y.shape \
for x in args \
for y in args]), 'Array lengths must be equal'
shp = args[0].shape
self.xa = asarray([a.flatten() for a in args], dtype=float64)
r = self._call_norm(self.xa, self.xi)
return dot(self._function(r), self.nodes).reshape(shp)
|