File: __init__.py

package info (click to toggle)
python-scipy 0.6.0-12
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 32,016 kB
  • ctags: 46,675
  • sloc: cpp: 124,854; ansic: 110,614; python: 108,664; fortran: 76,260; objc: 424; makefile: 384; sh: 10
file content (76 lines) | stat: -rw-r--r-- 2,258 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
"""
A Support Vector Machine, this module defines the following classes:

- `LibSvmCClassificationModel`, a model for C-SV classification
- `LibSvmNuClassificationModel`, a model for nu-SV classification
- `LibSvmEpsilonRegressionModel`, a model for epsilon-SV regression
- `LibSvmNuRegressionModel`, a model for nu-SV regression
- `LibSvmOneClassModel`, a model for distribution estimation
  (one-class SVM)

Kernel classes:

- `LinearKernel`, a linear kernel
- `PolynomialKernel`, a polynomial kernel
- `RBFKernel`, a radial basis function kernel
- `SigmoidKernel`, a sigmoid kernel
- `CustomKernel`, a kernel that wraps any callable

Dataset classes:

- `LibSvmClassificationDataSet`, a dataset for training classification
  models
- `LibSvmRegressionDataSet`, a dataset for training regression models
- `LibSvmOneClassDataSet`, a dataset for training distribution
  estimation (one-class SVM) models
- `LibSvmTestDataSet`, a dataset for testing with any model

Data type classes:

- `svm_node_dtype`, the libsvm data type for its arrays

How To Use This Module
======================
(See the individual classes, methods, and attributes for details.)

1. Import it: ``import svm`` or ``from svm import ...``.

2. Create a training dataset for your problem::

       traindata = LibSvmClassificationDataSet(labels, x)
       traindata = LibSvmRegressionDataSet(y, x)
       traindata = LibSvmOneClassDataSet(x)

   where x is sequence of NumPy arrays containing scalars or
   svm_node_dtype entries.

3. Create a test dataset::

       testdata = LibSvmTestDataSet(u)

4. Create a model and fit it to the training data::

       model = LibSvmCClassificationModel(kernel)
       results = model.fit(traindata)

5. Use the results to make predictions with the test data::

       p = results.predict(testdata)
       v = results.predict_values(testdata)
"""

raise ImportError(
"""svm has been moved to scikits. Please install
scikits.learn instead, and change your import to the following:

from scikits.learn.machine import svm

For informations about scikits, see:
http://projects.scipy.org/scipy/scikits/""")

from classification import *
from regression import *
from oneclass import *
from dataset import *
from kernel import *
from predict import *