1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
from ctypes import POINTER, c_int, c_double
from itertools import izip, repeat, chain
import numpy as N
from model import LibSvmModel
import libsvm
__all__ = [
'LibSvmCClassificationModel',
'LibSvmNuClassificationModel',
'LibSvmClassificationResults'
]
class LibSvmClassificationResults:
def __init__(self, model, traindataset, kernel, PredictorType):
modelc = model.contents
if modelc.param.svm_type not in [libsvm.C_SVC, libsvm.NU_SVC]:
raise TypeError, '%s is for classification problems' % \
str(self.__class__)
self.nr_class = modelc.nr_class
self.labels = modelc.labels[:self.nr_class]
nrho = self.nr_class * (self.nr_class - 1) / 2
self.rho = modelc.rho[:nrho]
self.nSV = modelc.nSV[:self.nr_class]
sv_coef = N.empty((self.nr_class - 1, modelc.l), dtype=N.float64)
for i, c in enumerate(modelc.sv_coef[:self.nr_class - 1]):
sv_coef[i,:] = c[:modelc.l]
self.sv_coef = sv_coef
self.predictor = PredictorType(model, traindataset, kernel)
def predict(self, dataset):
"""
This function does classification on a test vector x and
returns the label of the predicted class.
"""
if self.predictor.is_compact and dataset.is_array_data():
return [int(x) for x in
self.predictor.predict(dataset.data)]
else:
return [int(self.predictor.predict(x)) for x in dataset]
def predict_values(self, dataset):
"""
This function does classification on a test dataset and
returns decision values.
For training data with nr_class classes, this function returns
nr_class*(nr_class-1)/2 decision values in a dictionary for
each item in the test dataset. The keys of the dictionary are
2-tuples, one for each permutation of two class labels.
"""
n = self.nr_class * (self.nr_class - 1) / 2
def p(vv):
vv = N.atleast_1d(vv)
d = {}
labels = self.labels
for v, (li, lj) in \
izip(vv, chain(*[izip(repeat(x), labels[i+1:])
for i, x in enumerate(labels[:-1])])):
d[li, lj] = v
d[lj, li] = -v
return d
if self.predictor.is_compact and dataset.is_array_data():
vs = self.predictor.predict_values(dataset.data, n)
else:
vs = [self.predictor.predict_values(x, n) for x in dataset]
return [p(v) for v in vs]
def predict_probability(self, dataset):
"""
This function does classification on a test dataset for a
model with probability information.
This function returns a list of 2-tuples. The first item in
each tuple is the label of the class with the highest
probability. The second item is a dictionary that associated
labels with class probabilities.
"""
def p(x):
n = self.nr_class
label, prob_estimates = \
self.predictor.predict_probability(x, self.nr_class)
return int(label), prob_estimates
return [p(x) for x in dataset]
def compact(self):
self.predictor.compact()
class LibSvmClassificationModel(LibSvmModel):
"""
A model for support vector classification.
Classification models can predict a class label, decision values
over all classes or a posterior class probability.
See also:
- Platt. Probabilistic Outputs for Support Vector Machines and
Comparisons to Regularized Likelihood Methods.
- Lin. A Note on Platt's Probabilistic Outputs for Support Vector
Machines.
"""
ResultsType = LibSvmClassificationResults
def __init__(self, kernel, weights, **kwargs):
LibSvmModel.__init__(self, kernel, **kwargs)
if weights is not None:
self.weight_labels = N.empty((len(weights),), dtype=N.intp)
self.weights = N.empty((len(weights),), dtype=N.float64)
weights = weights[:]
weights.sort()
for i, (label, weight) in enumerate(weights):
self.weight_labels[i] = label
self.weights[i] = weight
self.param.nr_weight = len(weights)
self.param.weight_label = \
self.weight_labels.ctypes.data_as(POINTER(c_int))
self.param.weight = \
self.weights.ctypes.data_as(POINTER(c_double))
def cross_validate(self, dataset, nr_fold):
"""
Perform stratified cross-validation to determine the
suitability of chosen model parameters.
Data are separated to nr_fold folds. Each fold is validated
against a model trained using the data from the remaining
(nr_fold-1) folds.
This function returns the percentage of data that was
classified correctly over all the experiments.
"""
problem = dataset._create_svm_problem()
target = N.empty((len(dataset.data),), dtype=N.float64)
tp = target.ctypes.data_as(POINTER(c_double))
libsvm.svm_cross_validation(problem, self.param, nr_fold, tp)
total_correct = 0.
for x, t in zip(dataset.data, target):
if x[0] == int(t):
total_correct += 1
# XXX also return results from folds in a list
return 100.0 * total_correct / len(dataset.data)
class LibSvmCClassificationModel(LibSvmClassificationModel):
"""
A model for C-SV classification.
See also:
- Hsu, et al. A Practical Guide to Support Vector Classification.
- Gunn. Support Vector Machines for Classification and Regression.
- Burges. A Tutorial on Support Vector Machines for Pattern
Recognition.
"""
def __init__(self, kernel,
cost=1.0, weights=None, probability=False, **kwargs):
"""
Parameters:
- `cost`: XXX
- `weights`: XXX
"""
LibSvmClassificationModel.__init__(self, kernel, weights, **kwargs)
self.cost = cost
self.param.svm_type = libsvm.C_SVC
self.param.C = cost
self.param.probability = probability
class LibSvmNuClassificationModel(LibSvmClassificationModel):
"""
A model for nu-SV classification.
See also:
- Chen, et al. A Tutorial on nu-Support Vector Machines.
- Scholkopf, et al. New Support Vector Algorithms.
"""
def __init__(self, kernel,
nu=0.5, weights=None, probability=False, **kwargs):
"""
Parameters:
- `nu`: XXX
- `weights`: XXX
"""
LibSvmClassificationModel.__init__(self, kernel, weights, **kwargs)
self.nu = nu
self.param.svm_type = libsvm.NU_SVC
self.param.nu = nu
self.param.probability = probability
|