File: moving_funcs.py

package info (click to toggle)
python-scipy 0.6.0-12
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 32,016 kB
  • ctags: 46,675
  • sloc: cpp: 124,854; ansic: 110,614; python: 108,664; fortran: 76,260; objc: 424; makefile: 384; sh: 10
file content (358 lines) | stat: -rw-r--r-- 12,308 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
"""

A collection of moving functions for masked arrays and time series

:author: Pierre GF Gerard-Marchant & Matt Knox
:contact: pierregm_at_uga_dot_edu - mattknox_ca_at_hotmail_dot_com
:version: $Id: filters.py 2819 2007-03-03 23:00:20Z pierregm $
"""
__author__ = "Pierre GF Gerard-Marchant & Matt Knox ($Author: pierregm $)"
__version__ = '1.0'
__revision__ = "$Revision: 2819 $"
__date__     = '$Date: 2007-03-03 18:00:20 -0500 (Sat, 03 Mar 2007) $'

import numpy as N
from numpy import bool_, float_
narray = N.array

from scipy.signal import convolve, get_window

import maskedarray as MA
from maskedarray import MaskedArray, nomask, getmask, getmaskarray, masked
marray = MA.array

from timeseries.cseries import MA_mov_stddev, MA_mov_sum, MA_mov_average, \
                               MA_mov_median

__all__ = ['mov_sum', 'mov_median',
           'mov_average', 'mov_mean', 'mov_average_expw',
           'mov_stddev', 'mov_var', 'mov_covar', 'mov_corr',
           'cmov_average', 'cmov_mean', 'cmov_window'
           ]

def _process_result_dict(orig_data, result_dict):
    "process the results from the c function"

    rarray = result_dict['array']
    rtype = result_dict['array'].dtype
    rmask = result_dict['mask']

    # makes a copy of the appropriate type
    data = orig_data.astype(rtype).copy()
    data.flat = result_dict['array'].ravel()
    if not hasattr(data, '__setmask__'):
        data = data.view(MA.MaskedArray)
    data.__setmask__(rmask)
    return data

def _moving_func(data, cfunc, kwargs):

    if data.ndim == 1:
        kwargs['array'] = data

        result_dict = cfunc(**kwargs)
        return _process_result_dict(data, result_dict)

    elif data.ndim == 2:
        for i in range(data.shape[-1]):
            kwargs['array'] = data[:,i]
            result_dict = cfunc(**kwargs)
            
            if i == 0:
                rtype = result_dict['array'].dtype
                result = data.astype(rtype)
                print data.dtype, result.dtype
            
            rmask = result_dict['mask']

            curr_col = marray(result_dict['array'], mask=rmask, copy=False)
            result[:,i] = curr_col

        return result

    else:
        raise ValueError, "Data should be at most 2D"

#...............................................................................
def mov_sum(data, span, dtype=None):
    """Calculates the moving sum of a series.

:Parameters:
    $$data$$
    $$span$$
    $$dtype$$"""

    kwargs = {'span':span}
    if dtype is not None:
        kwargs['dtype'] = dtype
 
    return _moving_func(data, MA_mov_sum, kwargs)
#...............................................................................
def mov_median(data, span, dtype=None):
    """Calculates the moving median of a series.

:Parameters:
    $$data$$
    $$span$$
    $$dtype$$"""

    kwargs = {'span':span}
    if dtype is not None:
        kwargs['dtype'] = dtype

    return _moving_func(data, MA_mov_median, kwargs)
#...............................................................................
def mov_average(data, span, dtype=None):
    """Calculates the moving average of a series.

:Parameters:
    $$data$$
    $$span$$
    $$dtype$$"""
    
    kwargs = {'span':span}
    if dtype is not None:
        kwargs['dtype'] = dtype

    return _moving_func(data, MA_mov_average, kwargs)
mov_mean = mov_average
#...............................................................................
def _mov_var_stddev(data, span, is_variance, bias, dtype):
    "helper function for mov_var and mov_stddev functions"

    kwargs = {'span':span,
              'is_variance':is_variance,
              'bias':bias}
    if dtype is not None:
        kwargs['dtype'] = dtype

    return _moving_func(data, MA_mov_stddev, kwargs)
#...............................................................................
def mov_var(data, span, bias=False, dtype=None):
    """Calculates the moving variance of a 1-D array.

:Parameters:
    $$data$$
    $$span$$
    $$bias$$
    $$dtype$$"""
    
    return _mov_var_stddev(data=data, span=span,
                           is_variance=1, bias=int(bias), dtype=dtype)
#...............................................................................
def mov_stddev(data, span, bias=False, dtype=None):
    """Calculates the moving standard deviation of a 1-D array.

:Parameters:
    $$data$$
    $$span$$
    $$bias$$
    $$dtype$$"""
    
    return _mov_var_stddev(data=data, span=span,
                           is_variance=0, bias=int(bias), dtype=dtype)
#...............................................................................
def mov_covar(x, y, span, bias=False, dtype=None):
    """Calculates the moving covariance of two 1-D arrays.

:Parameters:
    $$x$$
    $$y$$
    $$span$$
    $$bias$$
    $$dtype$$"""
    
    result = x - mov_average(x, span, dtype=dtype)
    result = result * (y - mov_average(y, span, dtype=dtype))
    
    if bias: denom = span
    else: denom = span - 1
    
    return result/denom
#...............................................................................
def mov_corr(x, y, span, dtype=None):
    """Calculates the moving correlation of two 1-D arrays.

:Parameters:
    $$x$$
    $$y$$
    $$span$$
    $$dtype$$"""

    result = mov_covar(x, y, span, bias=True, dtype=dtype)
    result = result / mov_stddev(x, span, bias=True, dtype=dtype)
    result = result / mov_stddev(y, span, bias=True, dtype=dtype)
   
    return result
#...............................................................................
def mov_average_expw(data, span, tol=1e-6):
    """Calculates the exponentially weighted moving average of a series.

:Parameters:
    $$data$$
    span : int 
        Time periods. The smoothing factor is 2/(span + 1)
    tol : float, *[1e-6]*
        Tolerance for the definition of the mask. When data contains masked 
        values, this parameter determinea what points in the result should be masked.
        Values in the result that would not be "significantly" impacted (as 
        determined by this parameter) by the masked values are left unmasked."""

    data = marray(data, copy=True, subok=True)
    ismasked = (data._mask is not nomask)
    data._mask = N.zeros(data.shape, bool_)
    _data = data._data
    #
    k = 2./float(span + 1)
    def expmave_sub(a, b):
        return a + k * (b - a)
    #
    data._data.flat = N.frompyfunc(expmave_sub, 2, 1).accumulate(_data)
    if ismasked:
        _unmasked = N.logical_not(data._mask).astype(float_)
        marker = 1. - N.frompyfunc(expmave_sub, 2, 1).accumulate(_unmasked)
        data._mask[marker > tol] = True
    data._mask[0] = True
    #
    return data
#...............................................................................
def cmov_window(data, span, window_type):
    """Applies a centered moving window of type window_type and size span on the
data.

Returns a (subclass of) MaskedArray. The k first and k last data are always 
masked (with k=span//2). When data has a missing value at position i, the
result has missing values in the interval [i-k:i+k+1].
    
    
:Parameters:
    data : ndarray
        Data to process. The array should be at most 2D. On 2D arrays, the window
        is applied recursively on each column.
    span : integer
        The width of the window.
    window_type : string/tuple/float
        Window type (see Notes)
        
Notes
-----

The recognized window types are: boxcar, triang, blackman, hamming, hanning, 
bartlett, parzen, bohman, blackmanharris, nuttall, barthann, kaiser (needs beta), 
gaussian (needs std), general_gaussian (needs power, width), slepian (needs width).
If the window requires parameters, the window_type argument should be a tuple
with the first argument the string name of the window, and the next arguments 
the needed parameters. If window_type is a floating point number, it is interpreted 
as the beta parameter of the kaiser window.

Note also that only boxcar has been thoroughly tested."""

    data = marray(data, copy=True, subok=True)
    if data._mask is nomask:
        data._mask = N.zeros(data.shape, bool_)
    window = get_window(window_type, span, fftbins=False)
    (n, k) = (len(data), span//2)
    #
    if data.ndim == 1:
        data._data.flat = convolve(data._data, window)[k:n+k] / float(span)
        data._mask[:] = ((convolve(getmaskarray(data), window) > 0)[k:n+k])
    elif data.ndim == 2:
        for i in range(data.shape[-1]):
            _data = data._data[:,i]
            _data.flat = convolve(_data, window)[k:n+k] / float(span)
            data._mask[:,i] = (convolve(data._mask[:,i], window) > 0)[k:n+k]
    else:
        raise ValueError, "Data should be at most 2D"
    data._mask[:k] = data._mask[-k:] = True
    return data

def cmov_average(data, span):
    """Computes the centered moving average of size span on the data.
    
    Returns a (subclass of) MaskedArray. The k first and k last data are always 
    masked (with k=span//2). When data has a missing value at position i, 
    the result has missing values in the interval [i-k:i+k+1].
    
:Parameters:
    data : ndarray
        Data to process. The array should be at most 2D. On 2D arrays, the window
        is applied recursively on each column.
    span : integer
        The width of the window."""
    return cmov_window(data, span, 'boxcar')

cmov_mean = cmov_average

param_doc = {}
param_doc['data'] = \
"""data : ndarray
        Data must be an ndarray (or subclass). In particular, note that
        TimeSeries objects are valid here."""

param_doc['x'] = \
"""x : ndarray
        First array to be included in the calculation. x must be an ndarray (or
        subclass). In particular, note that TimeSeries objects are valid here."""

param_doc['y'] = \
"""y : ndarray
        Second array to be included in the calculation. y must be an ndarray (or
        subclass). In particular, note that TimeSeries objects are valid here."""

param_doc['span'] = \
"""span : int 
        Time periods to use for each calculation."""

param_doc['bias'] = \
"""bias : boolean (*False*)
        If False, Normalization is by (N-1) where N == span (unbiased
        estimate).  If True then normalization is by N."""

param_doc['dtype'] = \
"""dtype : numpy data type specification (*None*)
        dtype for the result"""

mov_result_doc = \
"""

:Return value:
    The result is always a masked array (preserves subclass attributes). The
    result at index i uses values from [i-span:i+1], and will be masked for the
    first `span` values. The result will also be masked at i if any of the
    input values in the slice [i-span:i+1] are masked."""

_g = globals()

# generate function doc strings
for fn in (x for x in __all__ if x[:4] == 'mov_' and x[4:] != 'mean'):
    fdoc = _g[fn].func_doc
    for prm, dc in param_doc.iteritems():
        fdoc = fdoc.replace('$$'+prm+'$$', dc)
    fdoc += mov_result_doc
    _g[fn].func_doc = fdoc


###############################################################################
if __name__ == '__main__':
    from timeseries import time_series, today
    from maskedarray.testutils import assert_equal, assert_almost_equal
    #
    series = time_series(N.arange(10),start_date=today('D'))
    #
    filtered = mov_sum(series,3)
    assert_equal(filtered, [0,1,3,6,9,12,15,18,21,24])
    assert_equal(filtered._mask, [1,1,0,0,0,0,0,0,0,0])
    assert_equal(filtered._dates, series._dates)
    assert_equal(series, N.arange(10))
    #
    filtered = mov_average(series,3)
    assert_equal(filtered, [0,1,1,2,3,4,5,6,7,8])
    assert_equal(filtered._mask, [1,1,0,0,0,0,0,0,0,0])
    assert_equal(filtered._dates, series._dates)
    assert_equal(series, N.arange(10))
    #
    filtered = mov_average(series._data,3)
    assert_equal(filtered, [0,1,1,2,3,4,5,6,7,8])
    assert_equal(filtered._mask, [1,1,0,0,0,0,0,0,0,0])
    assert_equal(series, N.arange(10))