1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
|
"""
The `TimeSeries` class provides a base for the definition of time series.
A time series is defined here as the combination of two arrays:
- an array storing the time information (as a `DateArray` instance);
- an array storing the data (as a `MaskedArray` instance.)
These two classes were liberally adapted from `MaskedArray` class.
:author: Pierre GF Gerard-Marchant & Matt Knox
:contact: pierregm_at_uga_dot_edu - mattknox_ca_at_hotmail_dot_com
:version: $Id: tseries.py 3231 2007-08-14 17:45:19Z mattknox_ca $
"""
__author__ = "Pierre GF Gerard-Marchant & Matt Knox ($Author: mattknox_ca $)"
__version__ = '1.0'
__revision__ = "$Revision: 3231 $"
__date__ = '$Date: 2007-08-14 10:45:19 -0700 (Tue, 14 Aug 2007) $'
import numpy
from numpy import ndarray
from numpy.core import bool_, complex_, float_, int_, object_
from numpy.core.multiarray import dtype
import numpy.core.fromnumeric as fromnumeric
import numpy.core.numeric as numeric
import numpy.core.umath as umath
from numpy.core.records import recarray
from numpy.core.records import fromarrays as recfromarrays
import maskedarray as MA
from maskedarray import MaskedArray, MAError, masked, nomask, \
filled, getmask, getmaskarray, hsplit, make_mask_none, mask_or, make_mask, \
masked_array
import tcore as corelib
import const as _c
import tdates
from tdates import DateError, InsufficientDateError
from tdates import Date, isDate, DateArray, isDateArray, \
date_array, date_array_fromlist, date_array_fromrange, thisday, today, \
check_freq, check_freq_str
import cseries
__all__ = [
'TimeSeriesError','TimeSeriesCompatibilityError','TimeSeries','isTimeSeries',
'time_series', 'tsmasked',
'mask_period','mask_inside_period','mask_outside_period','compressed',
'adjust_endpoints','align_series','align_with','aligned','convert','group_byperiod',
'pct','tshift','fill_missing_dates', 'split', 'stack', 'concatenate_series',
'empty_like',
'day_of_week','day_of_year','day','month','quarter','year',
'hour','minute','second',
'tofile','asrecords','flatten', 'check_observed',
]
#####---------------------------------------------------------------------------
#---- --- Observed options ---
#####---------------------------------------------------------------------------
fmtobs_dict = {'UNDEFINED': ['UNDEF','UNDEFINED',None],
'BEGINNING': ['BEGIN','BEGINNING'],
'ENDING': ['END','ENDING'],
'AVERAGED': ['AVERAGE','AVERAGED','MEAN'],
'SUMMED': ['SUM','SUMMED'],
'MAXIMUM': ['MAX','MAXIMUM','HIGH'],
'MINIMUM': ['MIN','MINIMUM','LOW']}
obs_dict = {"UNDEFINED":None,
"BEGINNING": corelib.first_unmasked_val,
"ENDING": corelib.last_unmasked_val,
"AVERAGED": MA.average,
"SUMMED": MA.sum,
"MAXIMUM": MA.maximum,
"MINIMUM": MA.minimum,
}
alias_obs_dict = {}
for ob, aliases in fmtobs_dict.iteritems():
for al in aliases:
alias_obs_dict[al] = obs_dict[ob]
obs_dict.update(alias_obs_dict)
fmtobs_revdict = corelib.reverse_dict(fmtobs_dict)
def fmtObserv(obStr):
"Converts a possible 'Observed' string into acceptable values."
if obStr is None:
return fmtobs_revdict[None]
elif obStr.upper() in fmtobs_revdict:
return fmtobs_revdict[obStr.upper()]
else:
raise ValueError("Invalid value for observed attribute: %s " % str(obStr))
check_observed = fmtObserv
#### --------------------------------------------------------------------------
#--- ... TimeSeriesError class ...
#### --------------------------------------------------------------------------
class TimeSeriesError(Exception):
"Class for TS related errors."
def __init__ (self, value=None):
"Creates an exception."
self.value = value
def __str__(self):
"Calculates the string representation."
return str(self.value)
__repr__ = __str__
class TimeSeriesCompatibilityError(TimeSeriesError):
"""Defines the exception raised when series are incompatible."""
def __init__(self, mode, first, second):
if mode == 'freq':
msg = "Incompatible time steps! (%s <> %s)"
elif mode == 'start_date':
msg = "Incompatible starting dates! (%s <> %s)"
elif mode == 'size':
msg = "Incompatible sizes! (%s <> %s)"
else:
msg = "Incompatibility ! (%s <> %s)"
msg = msg % (first, second)
TimeSeriesError.__init__(self, msg)
#def _compatibilitycheck(a, b):
def _timeseriescompat(a, b, raise_error=True):
"""Checks the date compatibility of two TimeSeries object.
Returns True if everything's fine, or raises an exception."""
if not (hasattr(a,'freq') and hasattr(b, 'freq')):
return True
if a.freq != b.freq:
if raise_error:
raise TimeSeriesCompatibilityError('freq', a.freq, b.freq)
else:
return False
elif a.start_date != b.start_date:
if raise_error:
raise TimeSeriesCompatibilityError('start_date',
a.start_date, b.start_date)
else:
return False
else:
step_diff = a._dates.get_steps() != b._dates.get_steps()
if (step_diff is True) or (hasattr(step_diff, "any") and step_diff.any()):
if raise_error:
raise TimeSeriesCompatibilityError('time_steps',
a._dates.get_steps(), b._dates.get_steps())
else:
return False
elif a.shape != b.shape:
if raise_error:
raise TimeSeriesCompatibilityError('size', "1: %s" % str(a.shape),
"2: %s" % str(b.shape))
else:
return False
return True
def _timeseriescompat_multiple(*series):
"""Checks the date compatibility of multiple TimeSeries objects.
Returns True if everything's fine, or raises an exception. Unlike
the binary version, all items must be TimeSeries objects."""
freqs, start_dates, steps, shapes = \
zip(*[(ser.freq, ser.start_date,
(ser._dates.get_steps() != series[0]._dates.get_steps()).any(),
ser.shape) for ser in series])
if len(set(freqs)) > 1:
errItems = tuple(set(freqs))
raise TimeSeriesCompatibilityError('freq', errItems[0], errItems[1])
if len(set(start_dates)) > 1:
errItems = tuple(set(start_dates))
raise TimeSeriesCompatibilityError('start_dates', errItems[0], errItems[1])
if max(steps) == True:
bad_index = [x for x, val in enumerate(steps) if val][0]
raise TimeSeriesCompatibilityError('time_steps',
series[0]._dates.get_steps(), series[bad_index]._dates.get_steps())
if len(set(shapes)) > 1:
errItems = tuple(set(shapes))
raise TimeSeriesCompatibilityError('size', "1: %s" % str(errItems[0].shape),
"2: %s" % str(errItems[1].shape))
return True
def _datadatescompat(data,dates):
"""Checks the compatibility of dates and data at the creation of a TimeSeries.
Returns True if everything's fine, raises an exception otherwise."""
# If there's only 1 element, the date is a Date object, which has no size...
tsize = numeric.size(dates)
dsize = data.size
# Only one data
if dsize == tsize:
return True
elif data.ndim > 1:
#dsize = numeric.asarray(data.shape)[:-1].prod()
dsize = data.shape[0]
if dsize == tsize:
return True
elif data.ndim == 0 and tsize <= 1:
return True
raise TimeSeriesCompatibilityError('size', "data: %s" % dsize,
"dates: %s" % tsize)
def _getdatalength(data):
"Estimates the length of a series (size/nb of variables)."
if numeric.ndim(data) >= 2:
return numeric.asarray(numeric.shape(data))[:-1].prod()
else:
return numeric.size(data)
def _compare_frequencies(*series):
"""Compares the frequencies of a sequence of series.
Returns the common frequency, or raises an exception if series have different
frequencies."""
unique_freqs = numpy.unique([x.freqstr for x in series])
try:
common_freq = unique_freqs.item()
except ValueError:
raise TimeSeriesError, \
"All series must have same frequency!"
return common_freq
##### --------------------------------------------------------------------------
##--- ... Time Series ...
##### --------------------------------------------------------------------------
class _tsmathmethod(object):
"""Defines a wrapper for arithmetic array methods (add, mul...).
When called, returns a new TimeSeries object, with the new series the result of
the method applied on the original series.
The `_dates` part remains unchanged.
"""
def __init__ (self, methodname):
self._name = methodname
#
def __get__(self, obj, objtype=None):
"Gets the calling object."
self.obj = obj
return self
#
def __call__ (self, other, *args):
"Execute the call behavior."
instance = self.obj
if isinstance(other, TimeSeries):
compat = _timeseriescompat(instance, other, raise_error=False)
else:
compat = True
func = getattr(super(TimeSeries, instance), self._name)
if compat:
result = func(other, *args).view(type(instance))
result._dates = instance._dates
else:
result = func(other, *args)._series
return result
class _tsarraymethod(object):
"""Defines a wrapper for basic array methods.
When called, returns a new TimeSeries object, with the new series the result of
the method applied on the original series.
If `ondates` is True, the same operation is performed on the `_dates`.
If `ondates` is False, the `_dates` part remains unchanged.
"""
def __init__ (self, methodname, ondates=False):
"""abfunc(fillx, filly) must be defined.
abinop(x, filly) = x for all x to enable reduce.
"""
self._name = methodname
self._ondates = ondates
#
def __get__(self, obj, objtype=None):
self.obj = obj
return self
#
def __call__ (self, *args):
"Execute the call behavior."
_name = self._name
instance = self.obj
func_series = getattr(super(TimeSeries, instance), _name)
result = func_series(*args)
if self._ondates:
result._dates = getattr(instance._dates, _name)(*args)
else:
result._dates = instance._dates
result.copy_attributes(instance)
return result
class _tsaxismethod(object):
"""Defines a wrapper for array methods working on an axis (mean...).
When called, returns a ndarray, as the result of the method applied on the series.
"""
def __init__ (self, methodname):
"""abfunc(fillx, filly) must be defined.
abinop(x, filly) = x for all x to enable reduce.
"""
self._name = methodname
#
def __get__(self, obj, objtype=None):
self.obj = obj
return self
#
def __call__ (self, *args, **params):
"Execute the call behavior."
(_dates, _series) = (self.obj._dates, self.obj._series)
func = getattr(_series, self._name)
result = func(*args, **params)
if _dates.size == _series.size:
return result
else:
try:
axis = params.get('axis', args[0])
if axis in [-1, _series.ndim-1]:
result = result.view(type(self.obj))
result._dates = _dates
# result = TimeSeries(result, dates=_dates)
except IndexError:
pass
return result
class TimeSeries(MaskedArray, object):
"""Base class for the definition of time series.
A time series is here defined as the combination of three arrays:
- `series` : *[ndarray]*
Data part
- `mask` : *[ndarray]*
Mask part
- `dates` : *[DateArray]*
Date part
The combination of `series` and `dates` is the `data` part.
"""
options = None
_defaultobserved = None
_genattributes = ['fill_value', 'observed']
def __new__(cls, data, dates=None, mask=nomask,
freq=None, observed=None, start_date=None, length=None,
dtype=None, copy=False, fill_value=None, subok=True,
keep_mask=True, small_mask=True, hard_mask=False, **options):
maparms = dict(copy=copy, dtype=dtype, fill_value=fill_value,subok=subok,
keep_mask=keep_mask, small_mask=small_mask,
hard_mask=hard_mask,)
_data = MaskedArray(data, mask=mask, **maparms)
# Get the frequency ..........................
freq = check_freq(freq)
# Get the dates ..............................
if dates is None:
newdates = getattr(data, '_dates', None)
else:
newdates = dates
if newdates is not None:
if not hasattr(newdates, 'freq'):
newdates = date_array(dlist=dates, freq=freq)
if freq != _c.FR_UND and newdates.freq != freq:
newdates = newdates.asfreq(freq)
else:
dshape = _data.shape
if len(dshape) > 0:
if length is None:
length = dshape[0]
newdates = date_array(start_date=start_date, length=length,
freq=freq)
else:
newdates = date_array([], freq=freq)
# Get observed ...............................
observed = getattr(data, 'observed', fmtObserv(observed))
# Get the data ...............................
if newdates._unsorted is not None:
_data = _data[newdates._unsorted]
if not subok or not isinstance(_data,TimeSeries):
_data = _data.view(cls)
if _data is masked:
assert(numeric.size(newdates)==1)
return _data.view(cls)
assert(_datadatescompat(_data,newdates))
_data._dates = newdates
if _data._dates.size == _data.size and _data.ndim > 1:
_data._dates.shape = _data.shape
_data.observed = observed
return _data
#............................................
def __array_finalize__(self,obj):
MaskedArray.__array_finalize__(self, obj)
self._dates = getattr(obj, '_dates', DateArray([]))
self.observed = getattr(obj, 'observed', None)
return
#..................................
def __array_wrap__(self, obj, context=None):
result = super(TimeSeries, self).__array_wrap__(obj, context)
result._dates = self._dates
return result
#............................................
def _get_series(self):
"Returns the series as a regular masked array."
if self._mask.ndim == 0 and self._mask:
return masked
return self.view(MaskedArray)
_series = property(fget=_get_series)
#............................................
def __checkindex(self, indx):
"Checks the validity of an index."
if isinstance(indx, int):
return (indx, indx)
elif isinstance(indx, str):
indx = self._dates.date_to_index(Date(self._dates.freq, string=indx))
return (indx, indx)
elif isDate(indx):
indx = self._dates.date_to_index(indx)
return (indx, indx)
elif isDateArray(indx):
if indx.size == 1:
indx = self._dates.date_to_index(indx[0])
return (indx,indx)
else:
d2i = self._dates.date_to_index
tmp = numpy.fromiter((d2i(i) for i in indx),int_)
return (tmp,tmp)
elif isinstance(indx,slice):
slice_start = self.__checkindex(indx.start)[0]
slice_stop = self.__checkindex(indx.stop)[0]
indx = slice(slice_start, slice_stop, indx.step)
return (indx,indx)
elif isinstance(indx, tuple):
if len(indx) > self.shape:
raise IndexError, "Too many indices"
if self._dates.size == self.size:
return (indx, indx)
return (indx,indx[0])
# elif len(indx)==2:
# return (indx,indx[0])
# return (indx,indx[:-1])
elif isTimeSeries(indx):
indx = indx._series
if getmask(indx) is not nomask:
msg = "Masked arrays must be filled before they can be used as indices!"
raise IndexError, msg
return (indx,indx)
def __getitem__(self, indx):
"""x.__getitem__(y) <==> x[y]
Returns the item described by i. Not a copy as in previous versions.
"""
(sindx, dindx) = self.__checkindex(indx)
newdata = numeric.array(self._series[sindx], copy=False, subok=True)
newdate = self._dates[dindx]
singlepoint = (len(numeric.shape(newdate))==0)
if singlepoint:
newdate = DateArray(newdate)
if newdata is masked:
newdata = tsmasked
newdata._dates = newdate
return newdata
elif self.ndim > 1:
# CHECK: use reshape, or set shape ?
newshape = (list((1,)) + list(newdata.shape))
newdata.shape = newshape
newdata = newdata.view(type(self))
newdata._dates = newdate
return newdata
# CHECK : The implementation below should work, but does not. Why ?
# newdata = numeric.array(self._data[sindx], copy=False)
# newdates = self._dates[dindx]
# if self._mask is not nomask:
# newmask = self._mask.copy()[sindx]
# else:
# newmask = nomask
# singlepoint = (len(numeric.shape(newdates))==0)
# if singlepoint:
# if newmask.ndim == 0 and newmask:
# output = tsmasked
# output._dates = newdates
# return output
# if self.ndim > 1:
# # CHECK: use reshape, or set shape ?
# newdata = newdata.reshape((list((1,)) + list(newdata.shape)))
# if newmask is not nomask:
# newmask.shape = newdata.shape
# newdata = newdata.view(type(self))
# newdata._dates = newdates
# newdata._mask = newmask
# return newdata
#........................
def __setitem__(self, indx, value):
"""x.__setitem__(i, y) <==> x[i]=y
Sets item described by index. If value is masked, masks those locations.
"""
if self is masked:
raise MAError, 'Cannot alter the masked element.'
(sindx, _) = self.__checkindex(indx)
super(TimeSeries, self).__setitem__(sindx, value)
#........................
def __getslice__(self, i, j):
"Gets slice described by i, j"
(si,di) = self.__checkindex(i)
(sj,dj) = self.__checkindex(j)
result = super(TimeSeries, self).__getitem__(slice(si,sj))
result._dates = self._dates[di:dj]
return result
#....
def __setslice__(self, i, j, value):
"Gets item described by i. Not a copy as in previous versions."
(si,_) = self.__checkindex(i)
(sj,_) = self.__checkindex(j)
#....
if isinstance(value, TimeSeries):
assert(_timeseriescompat(self[si:sj], value))
super(TimeSeries, self).__setitem__(slice(si,sj), value)
#......................................................
def __str__(self):
"""Returns a string representation of self (w/o the dates...)"""
return str(self._series)
def __repr__(self):
"""Calculates the repr representation, using masked for fill if
it is enabled. Otherwise fill with fill value.
"""
desc = """\
timeseries(
%(data)s,
dates =
%(time)s,
freq = %(freq)s)
"""
desc_short = """\
timeseries(%(data)s,
dates = %(time)s,
freq = %(freq)s)
"""
if numeric.size(self._dates) > 2 and self.isvalid():
timestr = "[%s ... %s]" % (str(self._dates[0]),str(self._dates[-1]))
else:
timestr = str(self.dates)
if self.ndim <= 1:
return desc_short % {'data': str(self._series),
'time': timestr,
'freq': self.freqstr, }
return desc % {'data': str(self._series),
'time': timestr,
'freq': self.freqstr, }
#............................................
__add__ = _tsmathmethod('__add__')
__radd__ = _tsmathmethod('__add__')
__sub__ = _tsmathmethod('__sub__')
__rsub__ = _tsmathmethod('__rsub__')
__pow__ = _tsmathmethod('__pow__')
__mul__ = _tsmathmethod('__mul__')
__rmul__ = _tsmathmethod('__mul__')
__div__ = _tsmathmethod('__div__')
__rdiv__ = _tsmathmethod('__rdiv__')
__truediv__ = _tsmathmethod('__truediv__')
__rtruediv__ = _tsmathmethod('__rtruediv__')
__floordiv__ = _tsmathmethod('__floordiv__')
__rfloordiv__ = _tsmathmethod('__rfloordiv__')
__eq__ = _tsmathmethod('__eq__')
__ne__ = _tsmathmethod('__ne__')
__lt__ = _tsmathmethod('__lt__')
__le__ = _tsmathmethod('__le__')
__gt__ = _tsmathmethod('__gt__')
__ge__ = _tsmathmethod('__ge__')
reshape = _tsarraymethod('reshape', ondates=True)
copy = _tsarraymethod('copy', ondates=True)
compress = _tsarraymethod('compress', ondates=True)
ravel = _tsarraymethod('ravel', ondates=True)
cumsum = _tsarraymethod('cumsum',ondates=False)
cumprod = _tsarraymethod('cumprod',ondates=False)
anom = _tsarraymethod('anom',ondates=False)
sum = _tsaxismethod('sum')
prod = _tsaxismethod('prod')
mean = _tsaxismethod('mean')
var = _tsaxismethod('var')
varu = _tsaxismethod('varu')
std = _tsaxismethod('std')
stdu = _tsaxismethod('stdu')
all = _tsaxismethod('all')
any = _tsaxismethod('any')
# def nonzero(self):
# """Returns a tuple of ndarrays, one for each dimension of the array,
# containing the indices of the non-zero elements in that dimension."""
# return self._series.nonzero()
# filled = _tsarraymethod('filled', ondates=False)
#............................................
def ids (self):
"""Return the ids of the data, dates and mask areas"""
return (id(self._series), id(self.dates),)
#------------------------------------------------------
@property
def series(self):
"Returns the series."
return self._series
@property
def dates(self):
"""Returns the dates"""
return self._dates
@property
def freq(self):
"""Returns the corresponding frequency (as an integer)."""
return self._dates.freq
@property
def freqstr(self):
"""Returns the corresponding frequency (as a string)."""
return self._dates.freqstr
@property
def day(self):
"Returns the day of month for each date in self._dates."
return self._dates.day
@property
def day_of_week(self):
"Returns the day of week for each date in self._dates."
return self._dates.day_of_week
@property
def day_of_year(self):
"Returns the day of year for each date in self._dates."
return self._dates.day_of_year
@property
def month(self):
"Returns the month for each date in self._dates."
return self._dates.month
@property
def quarter(self):
"Returns the quarter for each date in self._dates."
return self._dates.quarter
@property
def year(self):
"Returns the year for each date in self._dates."
return self._dates.year
@property
def second(self):
"Returns the seconds for each date in self._dates."
return self._dates.second
@property
def minute(self):
"Returns the minutes for each date in self._dates."
return self._dates.minute
@property
def hour(self):
"Returns the hour for each date in self._dates."
return self._dates.hour
@property
def week(self):
"Returns the week for each date in self._dates."
return self._dates.week
days = day
weekdays = day_of_week
yeardays = day_of_year
months = month
quarters = quarter
years = year
seconds = second
minutes = minute
hours = hour
weeks = week
@property
def start_date(self):
"""Returns the first date of the series."""
_dates = self._dates
dsize = _dates.size
if dsize == 0:
return None
elif dsize == 1:
return _dates[0]
else:
return Date(self.freq, _dates.flat[0])
@property
def end_date(self):
"""Returns the last date of the series."""
_dates = self._dates
dsize = _dates.size
if dsize == 0:
return None
elif dsize == 1:
return _dates[-1]
else:
return Date(self.freq, _dates.flat[-1])
def isvalid(self):
"""Returns whether the series has no duplicate/missing dates."""
return self._dates.isvalid()
def has_missing_dates(self):
"""Returns whether there's a date gap in the series."""
return self._dates.has_missing_dates()
def isfull(self):
"""Returns whether there's no date gap in the series."""
return self._dates.isfull()
def has_duplicated_dates(self):
"""Returns whether there are duplicated dates in the series."""
return self._dates.has_duplicated_dates()
def date_to_index(self, date):
"Returns the index corresponding to a given date, as an integer."
return self._dates.date_to_index(date)
#.....................................................
def asfreq(self, freq=None):
"Converts the dates to another frequency."
if freq is None:
return self
return TimeSeries(self._series, dates=self._dates.asfreq(freq))
#.....................................................
def transpose(self, *axes):
""" a.transpose(*axes)
Returns a view of 'a' with axes transposed. If no axes are given,
or None is passed, switches the order of the axes. For a 2-d
array, this is the usual matrix transpose. If axes are given,
they describe how the axes are permuted.
"""
if self._dates.size == self.size:
result = super(TimeSeries, self).transpose(*axes)
result._dates = self._dates.transpose(*axes)
else:
errmsg = "Operation not permitted on multi-variable series"
if (len(axes)==0) or axes[0] != 0:
raise TimeSeriesError, errmsg
else:
result = super(TimeSeries, self).transpose(*axes)
result._dates = self._dates
return result
def split(self):
"""Split a multiple series into individual columns."""
if self.ndim == 1:
return [self]
else:
n = self.shape[1]
arr = hsplit(self, n)[0]
return [self.__class__(numpy.squeeze(a),
self._dates,
**_attrib_dict(self)) for a in arr]
def filled(self, fill_value=None):
"""Returns an array of the same class as `_data`,
with masked values filled with `fill_value`.
Subclassing is preserved.
If `fill_value` is None, uses self.fill_value.
"""
result = self._series.filled(fill_value=fill_value).view(type(self))
result._dates = self._dates
result.copy_attributes(self)
return result
#......................................................
def copy_attributes(self, oldseries, exclude=[]):
"Copies the attributes from oldseries if they are not in the exclude list."
attrlist = type(self)._genattributes
if not isinstance(oldseries, TimeSeries):
msg = "Series should be a valid TimeSeries object! (got <%s> instead)"
raise TimeSeriesError, msg % type(oldseries)
for attr in attrlist:
if not attr in exclude:
setattr(self, attr, getattr(oldseries, attr))
#......................................................
# Pickling
def __getstate__(self):
"Returns the internal state of the TimeSeries, for pickling purposes."
# raise NotImplementedError,"Please use timeseries.archive/unarchive instead."""
state = (1,
self.shape,
self.dtype,
self.flags.fnc,
self._data.tostring(),
getmaskarray(self).tostring(),
self._fill_value,
self._dates.shape,
numeric.asarray(self._dates).tostring(),
self.freq,
)
return state
#
def __setstate__(self, state):
"""Restores the internal state of the TimeSeries, for pickling purposes.
`state` is typically the output of the ``__getstate__`` output, and is a 5-tuple:
- class name
- a tuple giving the shape of the data
- a typecode for the data
- a binary string for the data
- a binary string for the mask.
"""
(ver, shp, typ, isf, raw, msk, flv, dsh, dtm, frq) = state
super(TimeSeries, self).__setstate__((ver, shp, typ, isf, raw, msk, flv))
self._dates.__setstate__((dsh, dtype(int_), isf, dtm))
self._dates.freq = frq
#
def __reduce__(self):
"""Returns a 3-tuple for pickling a MaskedArray."""
return (_tsreconstruct,
(self.__class__, self._baseclass,
self.shape, self._dates.shape, self.dtype, self._fill_value),
self.__getstate__())
def _tsreconstruct(genclass, baseclass, baseshape, dateshape, basetype, fill_value):
"""Internal function that builds a new TimeSeries from the information stored
in a pickle."""
# raise NotImplementedError,"Please use timeseries.archive/unarchive instead."""
_series = ndarray.__new__(baseclass, baseshape, basetype)
_dates = ndarray.__new__(DateArray, dateshape, int_)
_mask = ndarray.__new__(ndarray, baseshape, bool_)
return genclass.__new__(genclass, _series, dates=_dates, mask=_mask,
dtype=basetype, fill_value=fill_value)
def _attrib_dict(series, exclude=[]):
"""this function is used for passing through attributes of one
time series to a new one being created"""
result = {'fill_value':series.fill_value,
'observed':series.observed}
return dict(filter(lambda x: x[0] not in exclude, result.iteritems()))
##### --------------------------------------------------------------------------
##--- ... Additional methods ...
##### --------------------------------------------------------------------------
#.......................................
class _tsblockedmethods(object):
"""Defines a wrapper for array methods that should be temporarily disabled.
"""
def __init__ (self, methodname):
"""abfunc(fillx, filly) must be defined.
abinop(x, filly) = x for all x to enable reduce.
"""
self._name = methodname
#
def __get__(self, obj, objtype=None):
self.obj = obj
return self
#
def __call__ (self, *args, **params):
raise NotImplementedError
#TimeSeries.transpose = _tsarraymethod('transpose', ondates=True)
TimeSeries.swapaxes = _tsarraymethod('swapaxes', ondates=True)
#####---------------------------------------------------------------------------
#---- --- Definition of functions from the corresponding methods ---
#####---------------------------------------------------------------------------
class _frommethod(object):
"""Defines functions from existing MaskedArray methods.
:ivar _methodname (String): Name of the method to transform.
"""
def __init__(self, methodname):
self._methodname = methodname
self.__doc__ = self.getdoc()
def getdoc(self):
"Returns the doc of the function (from the doc of the method)."
try:
return getattr(TimeSeries, self._methodname).__doc__
except:
return "???"
#
def __call__ (self, caller, *args, **params):
if hasattr(caller, self._methodname):
method = getattr(caller, self._methodname)
# If method is not callable, it's a property, and don't call it
if hasattr(method, '__call__'):
return method.__call__(*args, **params)
return method
method = getattr(fromnumeric.asarray(caller), self._methodname)
try:
return method(*args, **params)
except SystemError:
return getattr(numpy,self._methodname).__call__(caller, *args, **params)
#............................
day_of_week = _frommethod('day_of_week')
day_of_year = _frommethod('day_of_year')
year = _frommethod('year')
quarter = _frommethod('quarter')
month = _frommethod('month')
day = _frommethod('day')
hour = _frommethod('hour')
minute = _frommethod('minute')
second = _frommethod('second')
split = _frommethod('split')
#
##### ---------------------------------------------------------------------------
#---- ... Additional methods ...
##### ---------------------------------------------------------------------------
def tofile(self, output, sep='\t', format_dates=None):
"""Writes the TimeSeries to a file.
:Parameters:
- `output` (String) : Name or handle of the output file.
- `sep` (String) : Column separator *['\t']*.
- `format` (String) : Data format *['%s']*.
"""
if not hasattr(output, 'writeline'):
ofile = open(output,'w')
else:
ofile = output
if format_dates is None:
format_dates = self.dates[0].default_fmtstr()
oformat = "%%s%s%s" % (sep,format_dates)
for (_dates,_data) in numpy.broadcast(self._dates.ravel().asstrings(),
filled(self)):
ofile.write('%s\n' % sep.join([oformat % (_dates, _data) ]))
ofile.close()
TimeSeries.tofile = tofile
#............................................
def tolist(self, fill_value=None):
"""Copies the date and data portion of the time series to a hierarchical
python list and returns that list. Data items are converted to the nearest
compatible Python type. Dates are converted to standard Python datetime
objects. Masked values are filled with `fill_value`"""
return [(d.datetime, v) for (d,v) in \
zip(self.dates, self._series.tolist())]
TimeSeries.tolist = tolist
#............................................
def asrecords(series):
"""Returns the masked time series as a recarray.
Fields are `_dates`, `_data` and _`mask`.
"""
desctype = [('_dates',int_), ('_series',series.dtype), ('_mask', bool_)]
flat = series.ravel()
_dates = numeric.asarray(flat._dates)
if flat.size > 0:
return recfromarrays([_dates, flat._data, getmaskarray(flat)],
dtype=desctype,
shape = (flat.size,),
)
else:
return recfromarrays([[], [], []], dtype=desctype,
shape = (flat.size,),
)
TimeSeries.asrecords = asrecords
def flatten(series):
"""Flattens a (multi-) time series to 1D series."""
shp_ini = series.shape
# Already flat time series....
if len(shp_ini) == 1:
return series
# Folded single time series ..
newdates = series._dates.ravel()
if series._dates.size == series._series.size:
newshape = (series._series.size,)
else:
newshape = (numeric.asarray(shp_ini[:-1]).prod(), shp_ini[-1])
newseries = series._series.reshape(newshape)
return time_series(newseries, newdates)
TimeSeries.flatten = flatten
#####---------------------------------------------------------------------------
#---- --- Archiving ---
#####---------------------------------------------------------------------------
#TimeSeries.__dump__ = dump
#TimeSeries.__dumps__ = dumps
##### -------------------------------------------------------------------------
#---- --- TimeSeries creator ---
##### -------------------------------------------------------------------------
def time_series(data, dates=None, freq=None, observed=None,
start_date=None, end_date=None, length=None,
mask=nomask,
dtype=None, copy=False, fill_value=None,
keep_mask=True, small_mask=True, hard_mask=False):
"""Creates a TimeSeries object
:Parameters:
`dates` : ndarray
Array of dates.
`data` :
Array of data.
"""
data = numeric.array(data, copy=False, subok=True)
if dates is None:
dshape = data.shape
if len(dshape) > 0:
if length is None:
length = dshape[0]
if len(dshape) > 0:
dates = date_array(start_date=start_date, end_date=end_date,
length=length, freq=freq)
else:
dates = date_array([], freq=freq)
elif not isinstance(dates, DateArray):
dates = date_array(dlist=dates, freq=freq)
if dates._unsorted is not None:
idx = dates._unsorted
data = data[idx]
if mask is not nomask:
mask = mask[idx]
dates._unsorted = None
return TimeSeries(data=data, dates=dates, mask=mask,
observed=observed, copy=copy, dtype=dtype,
fill_value=fill_value, keep_mask=keep_mask,
small_mask=small_mask, hard_mask=hard_mask,)
def isTimeSeries(series):
"Returns whether the series is a valid TimeSeries object."
return isinstance(series, TimeSeries)
tsmasked = TimeSeries(masked,dates=DateArray(Date('D',1)))
##### --------------------------------------------------------------------------
#---- ... Additional functions ...
##### --------------------------------------------------------------------------
def mask_period(data, period=None, start_date=None, end_date=None,
inside=True, include_edges=True, inplace=False):
"""Returns x as an array masked where dates fall outside the selection period,
as well as where data are initially missing (masked).
:Parameters:
data : Timeseries
Data to process
period : Sequence
A sequence of (starting date, ending date).
start_date : string/Date *[None]*
Starting date. If None, uses the first date of the series.
end_date : string/Date *[None]*
Ending date. If None, uses the last date of the series.
inside : Boolean *[True]*
Whether the dates inside the range should be masked. If not, masks outside.
include_edges : Boolean *[True]*
Whether the starting and ending dates should be masked.
inplace : Boolean *[True]*
Whether the data mask should be modified in place. If not, returns a new
TimeSeries.
"""
data = masked_array(data, subok=True, copy=not inplace)
if not isTimeSeries(data):
raise ValueError,"Data should be a valid TimeSeries!"
dates = data._dates
if dates.ndim == 1:
dates_lims = dates[[0,-1]]
else:
dates_lims = dates.ravel()[[0,-1]]
# Check the period .....................
if period is not None:
if isinstance(period, (tuple, list, ndarray)):
(start_date, end_date) = (period[0], period[-1])
else:
(start_date, end_date) = (period, start_date)
# Check the starting date ..............
if start_date is None:
start_date = dates_lims[0]
elif isinstance(start_date, str):
start_date = Date(data.freq, string=start_date)
elif not isinstance(start_date, Date):
raise DateError,"Starting date should be a valid Date object!"
# Check the ending date ................
if end_date is None:
end_date = dates_lims[-1]
elif isinstance(end_date, str):
end_date = Date(data.freq, string=end_date)
elif not isinstance(end_date, Date):
raise DateError,"Starting date should be a valid Date object!"
# Constructs the selection mask .........
dates = data.dates
if inside:
if include_edges:
selection = (dates >= start_date) & (dates <= end_date)
else:
selection = (dates > start_date) & (dates < end_date)
else:
if include_edges:
selection = (dates <= start_date) | (dates >= end_date)
else:
selection = (dates < start_date) | (dates > end_date)
data[selection] = masked
return data
def mask_inside_period(data, start_date=None, end_date=None,
include_edges=True, inplace=False):
"""Masks values falling inside a given range of dates."""
return mask_period(data, start_date=start_date, end_date=end_date,
inside=True, include_edges=include_edges, inplace=inplace)
def mask_outside_period(data, start_date=None, end_date=None,
include_edges=True, inplace=False):
"""Masks values falling outside a given range of dates."""
return mask_period(data, start_date=start_date, end_date=end_date,
inside=False, include_edges=include_edges, inplace=inplace)
#...............................................................................
def compressed(series):
"""Suppresses missing values from a time series."""
if series._mask is nomask:
return series
if series.ndim == 1:
keeper = ~(series._mask)
elif series.ndim == 2:
# Both dates and data are 2D: ravel first
if series._dates.ndim == 2:
series = series.ravel()
keeper = ~(series._mask)
# 2D series w/ only one date : return a new series ....
elif series._dates.size == 1:
result = series._series.compressed().view(type(series))
result._dates = series.dates
return result
# a 2D series: suppress the rows (dates are in columns)
else:
keeper = ~(series._mask.any(-1))
else:
raise NotImplementedError
return series[keeper]
TimeSeries.compressed = compressed
#...............................................................................
def adjust_endpoints(a, start_date=None, end_date=None):
"""Returns a TimeSeries going from `start_date` to `end_date`.
If `start_date` and `end_date` both fall into the initial range of dates,
the new series is NOT a copy.
"""
# Series validity tests .....................
if not isinstance(a, TimeSeries):
raise TypeError,"Argument should be a valid TimeSeries object!"
if a.freq == 'U':
raise TimeSeriesError, \
"Cannot adjust a series with 'Undefined' frequency."
if not a.dates.isvalid():
raise TimeSeriesError, \
"Cannot adjust a series with missing or duplicated dates."
# Flatten the series if needed ..............
a = a.flatten()
shp_flat = a.shape
# Dates validity checks .,...................
msg = "%s should be a valid Date object! (got %s instead)"
if a.dates.size >= 1:
(dstart, dend) = a.dates[[0,-1]]
else:
(dstart, dend) = (None, None)
# Skip the empty series case
if dstart is None and (start_date is None or end_date is None):
raise TimeSeriesError, "Both start_date and end_date must be specified"+\
" to adjust endpoints of a zero length series!"
#....
if start_date is None:
start_date = dstart
start_lag = 0
else:
if not isinstance(start_date, Date):
raise TypeError, msg % ('start_date', type(start_date))
if dstart is not None:
start_lag = start_date - dstart
else:
start_lag = start_date
#....
if end_date is None:
end_date = dend
end_lag = 0
else:
if not isinstance(end_date, Date):
raise TypeError, msg % ('end_date', type(end_date))
if dend is not None:
end_lag = end_date - dend
else:
end_lag = end_date
# Check if the new range is included in the old one
if start_lag >= 0:
if end_lag == 0:
return a[start_lag:]
elif end_lag < 0:
return a[start_lag:end_lag]
# Create a new series .......................
newdates = date_array(start_date=start_date, end_date=end_date)
newshape = list(shp_flat)
newshape[0] = len(newdates)
newshape = tuple(newshape)
newseries = numeric.empty(newshape, dtype=a.dtype).view(type(a))
newseries.__setmask__(numeric.ones(newseries.shape, dtype=bool_))
newseries._dates = newdates
if dstart is not None:
start_date = max(start_date, dstart)
end_date = min(end_date, dend) + 1
newseries[start_date:end_date] = a[start_date:end_date]
newseries.copy_attributes(a)
return newseries
#.....................................................
def align_series(*series, **kwargs):
"""Aligns several TimeSeries, so that their starting and ending dates match.
Series are resized and filled with mased values accordingly.
The function accepts two extras parameters:
- `start_date` forces the series to start at that given date,
- `end_date` forces the series to end at that given date.
By default, `start_date` and `end_date` are set to the smallest and largest
dates respectively.
"""
if len(series) < 2:
return series
unique_freqs = numpy.unique([x.freqstr for x in series])
common_freq = _compare_frequencies(*series)
valid_states = [x.isvalid() for x in series]
if not numpy.all(valid_states):
raise TimeSeriesError, \
"Cannot adjust a series with missing or duplicated dates."
start_date = kwargs.pop('start_date',
min([x.start_date for x in series
if x.start_date is not None]))
if isinstance(start_date,str):
start_date = Date(common_freq, string=start_date)
end_date = kwargs.pop('end_date',
max([x.end_date for x in series
if x.end_date is not None]))
if isinstance(end_date,str):
end_date = Date(common_freq, string=end_date)
return [adjust_endpoints(x, start_date, end_date) for x in series]
aligned = align_series
#.....................................................
def align_with(*series):
"""Aligns several TimeSeries to the first of the list, so that their
starting and ending dates match.
Series are resized and filled with masked values accordingly.
"""
if len(series) < 2:
return series
dates = series[0]._dates[[0,-1]]
if len(series) == 2:
return adjust_endpoints(series[-1], dates[0], dates[-1])
return [adjust_endpoints(x, dates[0], dates[-1]) for x in series[1:]]
#....................................................................
def _convert1d(series, freq, func='auto', position='END', *args, **kwargs):
"""Converts a series to a frequency. Private function called by convert
When converting to a lower frequency, func is a function that acts
on a 1-d array and returns a scalar or 1-d array. func should handle
masked values appropriately. If func is "auto", then an
appropriate function is determined based on the observed attribute
of the series. If func is None, then a 2D array is returned, where each
column represents the values appropriately grouped into the new frequency.
interp and position will be ignored in this case.
When converting to a higher frequency, position is 'START' or 'END'
and determines where the data point is in each period (eg. if going
from monthly to daily, and position is 'END', then each data point is
placed at the end of the month).
"""
if not isinstance(series,TimeSeries):
raise TypeError, "The argument should be a valid TimeSeries!"
toFreq = check_freq(freq)
fromFreq = series.freq
if toFreq == _c.FR_UND:
raise TimeSeriesError, \
"Cannot convert a series to UNDEFINED frequency."
if fromFreq == _c.FR_UND:
raise TimeSeriesError, \
"Cannot convert a series with UNDEFINED frequency."
if not series.isvalid():
raise TimeSeriesError, \
"Cannot adjust a series with missing or duplicated dates."
if position.upper() not in ('END','START'):
raise ValueError("Invalid value for position argument: (%s). "\
"Should be in ['END','START']," % str(position))
start_date = series._dates[0]
if series.size == 0:
return TimeSeries(series, freq=toFreq,
start_date=start_date.asfreq(toFreq))
if func == 'auto':
func = obs_dict[series.observed]
tempData = series._series.filled()
tempMask = getmaskarray(series)
if (tempData.size // series._dates.size) > 1:
raise TimeSeriesError("convert works with 1D data only !")
cRetVal = cseries.TS_convert(tempData, fromFreq, toFreq, position,
int(start_date), tempMask)
_values = cRetVal['values']
_mask = cRetVal['mask']
_startindex = cRetVal['startindex']
start_date = Date(freq=toFreq, value=_startindex)
tempData = masked_array(_values, mask=_mask)
if tempData.ndim == 2 and func is not None:
tempData = MA.apply_along_axis(func, -1, tempData, *args, **kwargs)
newseries = tempData.view(type(series))
newseries._dates = date_array(start_date=start_date, length=len(newseries),
freq=toFreq)
newseries.copy_attributes(series)
return newseries
def convert(series, freq, func='auto', position='END', *args, **kwargs):
"""Converts a series to a frequency. Private function called by convert
When converting to a lower frequency, func is a function that acts
on a 1-d array and returns a scalar or 1-d array. func should handle
masked values appropriately. If func is "auto", then an
appropriate function is determined based on the observed attribute
of the series. If func is None, then a 2D array is returned, where each
column represents the values appropriately grouped into the new frequency.
interp and position will be ignored in this case.
When converting to a higher frequency, position is 'START' or 'END'
and determines where the data point is in each period (eg. if going
from monthly to daily, and position is 'END', then each data point is
placed at the end of the month).
"""
if series.ndim == 1:
obj = _convert1d(series, freq, func, position, *args, **kwargs)
elif series.ndim == 2:
base = _convert1d(series[:,0], freq, func, position, *args, **kwargs)
obj = MA.column_stack([_convert1d(m,freq,func,position,
*args, **kwargs)._series
for m in series.split()]).view(type(series))
obj._dates = base._dates
if func is None or (func,series.observed) == ('auto','UNDEFINED'):
shp = obj.shape
ncols = base.shape[-1]
obj.shape = (shp[0], shp[-1]//ncols, ncols)
obj = numpy.swapaxes(obj,1,2)
return obj
def group_byperiod(series, freq, position='END'):
"""Converts a series to a frequency, without any processing. If the series
has missing data, it is first filled with masked data. Duplicate values in the
series will raise an exception.
"""
if series.has_duplicated_dates():
raise TimeSeriesError("The input series must not have duplicated dates!")
elif series.has_missing_dates():
series = fill_missing_dates(series)
return convert(series, freq, func=None, position=position)
TimeSeries.convert = convert
TimeSeries.group_byperiod = group_byperiod
#...............................................................................
def tshift(series, nper, copy=True):
"""Returns a series of the same size as `series`, with the same
start_date and end_date, but values shifted by `nper`.
:Parameters:
- series : (TimeSeries)
TimeSeries object to shift
- nper : (int)
number of periods to shift. Negative numbers shift values to the
right, positive to the left
- copy : (boolean, *[True]*)
copies the data if True, returns a view if False.
:Example:
>>> series = time_series([0,1,2,3], start_date=Date(freq='A', year=2005))
>>> series
timeseries(data = [0 1 2 3],
dates = [2005 ... 2008],
freq = A-DEC)
>>> tshift(series, -1)
timeseries(data = [-- 0 1 2],
dates = [2005 ... 2008],
freq = A-DEC)
>>> pct_change = 100 * (series/tshift(series, -1, copy=False) - 1)"""
newdata = masked_array(numeric.empty(series.shape, dtype=series.dtype),
mask=True)
if copy:
inidata = series._series.copy()
else:
inidata = series._series
if nper < 0:
nper = max(-len(series), nper)
newdata[-nper:] = inidata[:nper]
elif nper > 0:
nper = min(len(series), nper)
newdata[:-nper] = inidata[nper:]
else:
newdata = inidata
newseries = newdata.view(type(series))
newseries._dates = series._dates
newseries.copy_attributes(series)
return newseries
TimeSeries.tshift = tshift
#...............................................................................
def pct(series, nper=1):
"""Returns the rolling percentage change of the series.
:Parameters:
- series : (TimeSeries)
TimeSeries object to to calculate percentage chage for
- nper : (int)
number of periods for percentage change
:Example:
>>> series = time_series([2.,1.,2.,3.], start_date=Date(freq='A', year=2005))
>>> pct(series)
timeseries(data = [-- -50.0 100.0 50.0],
dates = [2005 ... 2008],
freq = A-DEC)
>>> pct(series, 2)
timeseries(data = [-- -- 0.0 200.0],
dates = [2005 ... 2008],
freq = A-DEC)"""
newdata = masked_array(numeric.empty(series.shape, dtype=series.dtype),
mask=True)
if nper < newdata.size:
newdata[nper:] = 100*(series._series[nper:]/series._series[:-nper] - 1)
newseries = newdata.view(type(series))
newseries._dates = series._dates
newseries.copy_attributes(series)
return newseries
TimeSeries.pct = pct
#...............................................................................
def fill_missing_dates(data, dates=None, freq=None,fill_value=None):
"""Finds and fills the missing dates in a time series.
The data corresponding to the initially missing dates are masked, or filled to
`fill_value`.
:Parameters:
`data`
Initial array of data.
`dates`
Initial array of dates.
`freq` : float *[None]*
New date resolutions. If *None*, the initial resolution is used instead.
`fill_value` : float *[None]*
Default value for missing data. If None, the data are just masked.
"""
# Check the frequency ........
orig_freq = freq
freq = check_freq(freq)
if orig_freq is not None and freq == _c.FR_UND:
freqstr = check_freq_str(freq)
raise ValueError,\
"Unable to define a proper date resolution (found %s)." % freqstr
# Check the dates .............
if dates is None:
if not isTimeSeries(data):
raise InsufficientDateError
dates = data._dates
else:
if not isinstance(dates, DateArray):
dates = DateArray(dates, freq)
dflat = dates.asfreq(freq).ravel()
if not dflat.has_missing_dates():
if isinstance(data, TimeSeries):
return data
data = data.view(TimeSeries)
data._dates = dflat
return data
# Check the data ..............
if isinstance(data, MaskedArray):
datad = data._data
datam = data._mask
if isinstance(data, TimeSeries):
datat = type(data)
else:
datat = TimeSeries
else:
datad = numpy.asarray(data)
datam = nomask
datat = TimeSeries
# Check whether we need to flatten the data
if dates.ndim > 1 and dates.ndim == datad.ndim:
datad.shape = -1
# ...and now, fill it ! ......
(tstart, tend) = dflat[[0,-1]]
newdates = date_array(start_date=tstart, end_date=tend)
(osize, nsize) = (dflat.size, newdates.size)
#.............................
# Get the steps between consecutive data.
delta = dflat.get_steps()-1
gap = delta.nonzero()
slcid = numpy.r_[[0,], numpy.arange(1,osize)[gap], [osize,]]
oldslc = numpy.array([slice(i,e)
for (i,e) in numpy.broadcast(slcid[:-1],slcid[1:])])
addidx = delta[gap].astype(int_).cumsum()
newslc = numpy.r_[[oldslc[0]],
[slice(i+d,e+d) for (i,e,d) in \
numpy.broadcast(slcid[1:-1],slcid[2:],addidx)]
]
#.............................
# Just a quick check
vdflat = numeric.asarray(dflat)
vnewdates = numeric.asarray(newdates)
for (osl,nsl) in zip(oldslc,newslc):
assert numpy.equal(vdflat[osl],vnewdates[nsl]).all(),\
"Slicing mishap ! Please check %s (old) and %s (new)" % (osl,nsl)
#.............................
newshape = list(datad.shape)
newshape[0] = nsize
newdatad = numeric.empty(newshape, data.dtype)
newdatam = numeric.ones(newshape, bool_)
#....
if datam is nomask:
for (new,old) in zip(newslc,oldslc):
newdatad[new] = datad[old]
newdatam[new] = False
else:
for (new,old) in zip(newslc,oldslc):
newdatad[new] = datad[old]
newdatam[new] = datam[old]
newdata = MA.masked_array(newdatad, mask=newdatam, fill_value=fill_value)
# # Get new shape ..............
# if data.ndim == 1:
# nshp = (newdates.size,)
# else:
# nshp = tuple([-1,] + list(data.shape[1:]))
# _data = newdata.reshape(nshp).view(type(data))
_data = newdata.view(datat)
_data._dates = newdates
return _data
# return time_series(newdata.reshape(nshp), newdates)
#...............................................................................
def stack(*series):
"""Performs a column_stack on the data from each series, and the
resulting series has the same dates as each individual series. All series
must be date compatible.
:Parameters:
`*series` : the series to be stacked
"""
_timeseriescompat_multiple(*series)
return time_series(MA.column_stack(series), series[0]._dates,
**_attrib_dict(series[0]))
#...............................................................................
def concatenate_series(*series, **kwargs):
"""Concatenates a sequence of series, by chronological order.
Overlapping data are processed in a FIFO basis: the data from the first series
of the sequence will be overwritten by the data of the second series, and so forth.
If keep_gap is true, any gap between consecutive, non overlapping series are
kept: the corresponding data are masked.
"""
keep_gap = kwargs.pop('keep_gap', True)
if len(kwargs) > 0:
raise KeyError("unrecognized keyword: %s" % list(kwargs)[0])
common_f = _compare_frequencies(*series)
start_date = min([s.start_date for s in series if s.start_date is not None])
end_date = max([s.end_date for s in series if s.end_date is not None])
newdtype = max([s.dtype for s in series])
whichone = numeric.zeros((end_date-start_date+1), dtype=int_)
newseries = time_series(numeric.empty((end_date-start_date+1), dtype=newdtype),
dates=date_array(start_date, end_date, freq=common_f),
mask=True)
newdata = newseries._data
newmask = newseries._mask
for (k,s) in enumerate(series):
start = s.start_date - start_date
end = start + len(s)
whichone[start:end] = k+1
newdata[start:end] = s._data
if s._mask is nomask:
newmask[start:end] = False
else:
newmask[start:end] = s._mask
keeper = whichone.astype(bool_)
if not keep_gap:
newseries = newseries[keeper]
else:
newdata[~keeper] = 0
return newseries
#...............................................................................
def empty_like(series):
"""Returns an empty series with the same dtype, mask and dates as series."""
result = numpy.empty_like(series).view(type(series))
result._dates = series._dates
result._mask = series._mask
return result
################################################################################
if __name__ == '__main__':
from maskedarray.testutils import assert_equal, assert_array_equal
if 1:
dlist = ['2007-01-%02i' % i for i in range(1,16)]
dates = date_array_fromlist(dlist)
data = masked_array(numeric.arange(15), mask=[1,0,0,0,0]*3)
series = time_series(data, dlist)
#
aseries = time_series(data, dates+10)
bseries = time_series(data, dates-10)
(a, b) = align_with(series, aseries, bseries)
assert_equal(a._dates, series._dates)
assert_equal(b._dates, series._dates)
assert_equal(a[-5:], series[:5])
assert_equal(b[:5], series[-5:])
#
if 1:
data = numpy.arange(5*24).reshape(5,24)
datelist = ['2007-07-01','2007-07-02','2007-07-03','2007-07-05','2007-07-06']
dates = date_array_fromlist(datelist, 'D')
dseries = time_series(data, dates)
ndates = date_array_fromrange(start_date=dates[0],end_date=dates[-2])
#
fseries = fill_missing_dates(dseries)
assert_equal(fseries.shape, (6,24))
assert_equal(fseries._mask[:,0], [0,0,0,1,0,0])
#
fseries = fill_missing_dates(dseries[:,0])
assert_equal(fseries.shape, (6,))
assert_equal(fseries._mask, [0,0,0,1,0,0])
#
series = time_series(data.ravel()[:4].reshape(2,2),dates=dates[:-1])
fseries = fill_missing_dates(series)
assert_equal(fseries.shape, (5,))
assert_equal(fseries._mask, [0,0,0,1,0,])
#
fseries = fill_missing_dates(data, date_array_fromlist(datelist,'D'))
|