1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
## Automatically adapted for scipy Oct 31, 2005 by
# Copyright (c) 1996, 1997, The Regents of the University of California.
# All rights reserved. See Legal.htm for full text and disclaimer.
# The following is so I know about arrays:
from scipy import *
from numpy.core.umath import *
from shapetest import *
from graftypes import *
from yorick import *
class Curve :
"""
x = Curve (...keyword arguments...) will create a curve with coordinates
and characteristics such as color, type, label, etc.
The keyword arguments for Curve are:
y = <sequence of floating point values> (required)
x = <sequence of floating point values> (optional)
color = <value> where <value> is an integer from 0 to 63
representing an entry in a color chart, or a
common color name like "red", "blue", "background", etc.
axis = "left" or "right" tells whether the left or right
y axis will be assigned to this curve. (This option is
not available in all graphics packages and will be ignored
if that is the case.)
label = <string> represents the label of this curve.
type = <value> tells how the curve will be plotted: "line",
"solid" (same as "line"), "step", "dash", "dashdot".
"dashdotdot", "none", "+", "*", "o", "x", and "." are
allowed. If the option is not available in a particular
graphics package, a good guess will be substituted.
If type = "none" and marks = 1, the plot will be
a polymarker plot, if supported by the graphics.
Note that because of disparities among graphics packages
supported, you can specify plotting a curve
pointwise with symbols like "+", "*", etc., either
by use of the type variable or using marks and markers
in conjunction with type = "none".
marks = 0 or 1; select unadorned lines (0) or lines with
occasional markers (1). Some graphics packages do not
have this option. The markers default to letters of
the alphabet, but can be changed by the marker keyword.
marker = character or integer value for character used to mark
this curve if marks = 1. Special values '\1', '\2',
'\3', '\4', and '\5' stand for point, plus, asterisk,
circle, and cross, which sometimes look prettier than
characters on some devices.
width = real number; specifies the width of a curve if this
is supported by the graphics. 1.0 gives a pretty finely
drawn curve and is the default.
hide = 0 or 1; if set to 1, this curve will be hidden on
the plot.
Let x be a Curve object. Then some of the methods are:
x.set (...keyword arguments...) will set the specified argument(s)
to new value(s)
x.new (...keyword arguments...) clears the curve and defines a
new one.
"""
def type (self) :
return CurveType
_CurveSpecError = "CurveSpecError"
def __init__ ( self, * kwds , ** keywords ) :
if len (kwds) == 1 :
keywords = kwds[0]
if ( keywords.has_key ( "y" ) ) :
self.y = keywords ["y"]
else :
raise self._CurveSpecError , "No y array has been specified."
if is_scalar (self.y) :
raise self._CurveSpecError , "y must be an array."
if ( keywords.has_key ( "x" ) and keywords ["x"] is not None) :
self.x = keywords ["x"]
else :
if len ( shape (self.y) ) == 1 :
self.x = arange (len (self.y), dtype = Float)
else :
self.x = arange (self.y.shape [1], dtype = Float)
if abs (len (self.x) - len (self.y)) == 1 :
# average the longer one
if len (self.x) > len (self.y) :
self.x = zcen_ (self.x, 0)
else :
self.y = zcen_ (self.y, 0)
elif len (self.x) != len (self.y) :
raise self._CurveSpecError , \
"x and y must satisfy |len (x) - len (y)| <= 1."
if keywords.has_key ( "type" ) :
# ZCM 5/23/96 adding gist, pass type on unchanged
self.line_type = keywords [ "type" ]
else :
self.line_type = "unspecified"
# New type added for Gist
if keywords.has_key ( "marker" ) :
self.marker = keywords [ "marker" ]
else :
self.marker = None # default on engines with marked curves
if keywords.has_key ( "marks" ) :
self.marks = keywords [ "marks" ]
else :
self.marks = 0
if keywords.has_key ( "color" ) :
# ZCM 5/23/96 color conversions done at curve2d level
self.color = keywords ["color"]
else :
self.color = "foreground" # foreground
if keywords.has_key ( "axis" ) :
self.axis = keywords [ "axis" ]
else :
self.axis = "left"
if keywords.has_key ( "label" ) :
self.label = keywords [ "label" ]
else :
self.label = " "
if keywords.has_key ( "hide" ) :
self.hide = keywords [ "hide" ]
else :
self.hide = 0
if keywords.has_key ( "width" ) :
self.width = keywords [ "width" ]
else :
self.width = 1.0
if keywords.has_key ( "marker" ) :
self.marker = keywords [ "marker" ]
else :
self.marker = None # default on engines with marked curves
if keywords.has_key ( "marks" ) :
self.marks = keywords [ "marks" ]
else :
self.marks = 0
def new ( self, ** keywords ) :
""" new (...keyword arguments...) allows you to reuse a
previously existing curve.
"""
del self.x, self.y, self.axis, self.label, self.line_type, self.color
self.__init__ ( keywords )
def set ( self , ** keywords ) :
""" set (...keyword arguments...) allows you to set individual
curve characteristics. No error checking is done.
"""
for k in keywords.keys ():
if k == "x" :
self.x = keywords ["x"]
elif k == "y" :
self.y = keywords ["y"]
elif k == "type" :
self.line_type = keywords ["type"]
else :
setattr (self, k, keywords [k])
if abs (len (self.x) - len (self.y)) == 1 :
# average the longer one
if len (self.x) > len (self.y) :
self.x = zcen_ (self.x, 0)
else :
self.y = zcen_ (self.y, 0)
elif len (self.x) != len (self.y) :
raise self._CurveSpecError , \
"x and y must satisfy |len (x) - len (y)| <= 1."
|