File: demo5.py

package info (click to toggle)
python-scipy 0.6.0-12
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 32,016 kB
  • ctags: 46,675
  • sloc: cpp: 124,854; ansic: 110,614; python: 108,664; fortran: 76,260; objc: 424; makefile: 384; sh: 10
file content (638 lines) | stat: -rw-r--r-- 22,769 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
## Automatically adapted for scipy Oct 31, 2005 by

# Copyright (c) 1996, 1997, The Regents of the University of California.
# All rights reserved.  See Legal.htm for full text and disclaimer.

from plwf import *
from pl3d import *
from movie import *
from slice3 import *
from yorick import *
from gist import *
from gistfuncs import *
from numpy import rand


window3 (hcp = "talk.ps", dump = 1)

palette ("gray.gp")

demo5_n = 20. * ones (3)

making_movie = 0

def demo5_light (i) :
    global making_movie
    if i >= 30 : return 0
    theta = pi / 4 + (i - 1) * 2 * pi/29
    light3 (sdir = array ( [cos(theta), .25, sin(theta)], Float))
    # without an explicit call to draw3, the light3 function would
    # cause no changes until Python paused for input from the keyboard,
    # since unlike the primitive plotting functions (plg, plf, plfp, ...)
    # the fma call made by the movie function will not trigger the
    # 3D display list
    # any movie frame display function which uses the 3D drawing
    # functions in pl3d.i will need to do this
    # the !making_movie flag supresses the fma in draw3 if this function
    # is called by movie (which issues its own fma), but allows it
    # otherwise

    draw3 ( not making_movie )
    return 1

def paws ( ) :
    i = raw_input ("Type in any string to continue; ^C to return to prompt. ")
    return

from PR import *
def demo5 (*itest) :
    """demo5 () or demo5 (i)
      Run examples of use of pl3d.i, plwf.i, and slice3.i.  With
      argument I = 1, 2, or 3, run that particular demonstration.
      Read the source code to understand the details of how the
      various effects are obtained.

      demo5 (1) demonstrates the various effects which can be obtained
      with the plwf (plot wire frame) function.
      demo5 (2) demonstrates shading effects controlled by the light3
      function
      demo5 (3) demonstrates the slice3, slice2, and pl3tree functions,
      as well as changing the orientation of the 3D object
    """
    global making_movie
    if len (itest) == 0 or itest [0] == 1 :
        set_draw3_ (0)
        x = span (-1, 1, 64, 64)
        y = transpose (x)
        z = (x + y) * exp (-6.*(x*x+y*y))
        limits_(square = 1)
        print  "(plot wire frame) plwf,z,y,x"
        orient3 ( )
        light3 ( )
        plwf (z, y, x)
        [xmin, xmax, ymin, ymax] = draw3(1) # not necessary interactively
        limits (xmin, xmax, ymin, ymax)
        plt("opaque wire mesh", .30, .42)
        paws ( )
        print "plwf,z,y,x, shade=1,ecolor=\"red\""
        plwf(z,y,x,shade=1,ecolor="red")
        [xmin, xmax, ymin, ymax] = draw3(1) # not necessary interactively
        limits (xmin, xmax, ymin, ymax)
        paws()
        print "plwf,z,y,x, shade=1,edges=0"
        plwf(z,y,x,shade=1,edges=0)
        [xmin, xmax, ymin, ymax] = draw3(1) # not necessary interactively
        limits (xmin, xmax, ymin, ymax)
        paws ( )
        light3 ( diffuse=.1, specular=1., sdir=array([0,0,-1]))
        [xmin, xmax, ymin, ymax] = draw3(1)
        limits (xmin, xmax, ymin, ymax)
        paws ( )
        light3 ( diffuse=.5, specular=1., sdir=array([1,.5,1]))
        [xmin, xmax, ymin, ymax] = draw3 (1)
        limits (xmin, xmax, ymin, ymax)
        paws ( )
        light3 ( ambient=.1,diffuse=.1,specular=1.,
               sdir=array([[0,0,-1],[1,.5,1]]),spower=array([4,2]))
        [xmin, xmax, ymin, ymax] = draw3(1)
        limits (xmin, xmax, ymin, ymax)
        paws ( )
    if len (itest) == 0 or itest [0] == 2 :
        set_draw3_ (0)
        x = span (-1, 1, 64, 64)
        y = transpose (x)
        z = (x + y) * exp (-6.*(x*x+y*y))
        print "light3 function demo- default lighting"
        orient3 ( )
        light3 ( )
        plwf (z,y,x,shade=1,edges=0)
        [xmin, xmax, ymin, ymax] = draw3 (1) # not necessary interactively
        limits (xmin, xmax, ymin, ymax)
        paws( )
        print "light3,diffuse=.2,specular=1"
        light3(diffuse=.2,specular=1)
        limits_(square = 1)
        [xmin, xmax, ymin, ymax] = draw3(1) # not necessary interactively
        limits (xmin, xmax, ymin, ymax)
        paws()
        print "light3,sdir=[cos(theta),.25,sin(theta)]  -- movie"
        making_movie = 1
        movie(demo5_light, lims = [xmin, xmax, ymin, ymax])
        making_movie = 0
        fma()
        demo5_light(1)
        paws()
        light3()
    if len (itest) == 0 or itest [0] == 3 :
        nx = demo5_n [0]
        ny = demo5_n [1]
        nz = demo5_n [2]
        xyz = zeros ( (3, nx, ny, nz), Float)
        xyz [0] = multiply.outer ( span (-1, 1, nx), ones ( (ny, nz), Float))
        xyz [1] = multiply.outer ( ones (nx, Float),
           multiply.outer ( span (-1, 1, ny), ones (nz, Float)))
        xyz [2] = multiply.outer ( ones ( (nx, ny), Float), span (-1, 1, nz))
        r = sqrt (xyz [0] ** 2 + xyz [1] **2 + xyz [2] **2)
        theta = arccos (xyz [2] / r)
        phi = arctan2 (xyz [1] , xyz [0] + logical_not (r))
        y32 = sin (theta) ** 2 * cos (theta) * cos (2 * phi)
        m3 = mesh3 (xyz, funcs = [r * (1. + y32)])
        del r, theta, phi, xyz, y32

        print "   test uses " + `(nx - 1) * (ny - 1) * (nz - 1)` + " cells"
        elapsed = [0., 0., 0.]
        elapsed = timer_ (elapsed)
        elapsed0 = elapsed

        [nv, xyzv, dum] = slice3 (m3, 1, None, None, value = .50)
            # (inner isosurface)
        [nw, xyzw, dum] = slice3 (m3, 1, None, None, value = 1.)
            # (outer isosurface)
        pxy = plane3 ( array ([0, 0, 1], Float ), zeros (3, Float))
        pyz = plane3 ( array ([1, 0, 0], Float ), zeros (3, Float))
        [np, xyzp, vp] = slice3 (m3, pyz, None, None, 1)
            # (pseudo-colored slice)
        [np, xyzp, vp] = slice2 (pxy, np, xyzp, vp)
            # (cut slice in half)
        [nv, xyzv, d1, nvb, xyzvb, d2] = \
            slice2x (pxy, nv, xyzv, None)
        [nv, xyzv, d1] = \
            slice2 (- pyz, nv, xyzv, None)
            # (...halve one of those halves)
        [nw, xyzw, d1, nwb, xyzwb, d2] = \
            slice2x ( pxy , nw, xyzw, None)
            # (split outer in halves)
        [nw, xyzw, d1] = \
            slice2 (- pyz, nw, xyzw, None)

        elapsed = timer_ (elapsed)
        timer_print ("slicing time", elapsed - elapsed0)

        fma ()
        print "split_palette,\"earth.gp\" -- generate palette for pl3tree"
        split_palette ("earth.gp")
        print "gnomon -- turn on gnomon"
        gnomon (1)

        print "pl3tree with 1 slicing plane, 2 isosurfaces"
        clear3 ()
        # Make sure we don't draw till ready
        set_draw3_ (0)
        pl3tree (np, xyzp, vp, pyz)
        pl3tree (nvb, xyzvb)
        pl3tree (nwb, xyzwb)
        pl3tree (nv, xyzv)
        pl3tree (nw, xyzw)
        orient3 ()
        light3 (diffuse = .2, specular = 1)
        limits ()
        limits (square=1)
        demo5_light (1)
        paws ()
        hcp ()

        print "spin3 animated rotation, use rot3 or orient3 for one frame"
        # don't want limits to autoscale during animation
        lims = limits ( )
        spin3 ()
        limits ( ) # back to autoscaling
        demo5_light (1)
        paws ()

        light3 ()
        gnomon (0)
        limits (square = 1)
        palette ("gray.gp")

    if len (itest) == 0 or itest [0] == 4 :
        f = PR ('./bills_plot')
        n_nodes = f.NumNodes
        n_z = f.NodesOnZones
        x = f.XNodeCoords
        y = f.YNodeCoords
        z = f.ZNodeCoords
        c = f.ZNodeVelocity
        n_zones = f.NumZones
        # Put vertices in right order for Gist
        n_z = transpose (
           take (transpose (n_z), array ( [0, 4, 3, 7, 1, 5, 2, 6]),axis=0))
        m3 = mesh3 (x, y, z, funcs = [c], verts = n_z ) # [0:10])
        [nv, xyzv, cv] = slice3 (m3, 1, None, None, 1, value = .9 * max (c) )
        pyz = plane3 ( array ([1, 0, 0], Float ), zeros (3, Float))
        pxz = plane3 ( array ([0, 1, 0], Float ), zeros (3, Float))

        # draw a colored plane first
        fma ()
        clear3 ()
        # Make sure we don't draw till ready
        set_draw3_ (0)
        [np, xyzp, vp] = slice3 (m3, pyz, None, None, 1)
        pl3tree (np, xyzp, vp, pyz, split = 0)
        palette ("rainbow.gp")
        orient3 ()
        demo5_light (1)
        paws ()


#     [nv, xyzv, d1] = \
#         slice2 (- pyz, nv, xyzv, None)
        [nw, xyzw, cw] = slice3 (m3, 1, None, None, 1, value = .9 * min (c) )
#     [nw, xyzw, d1] = \
#         slice2 (- pyz, nw, xyzw, None)
        [nvi, xyzvi, cvi] = slice3 (m3, 1, None, None, 1, value = .5 * min (c) )
        [nvi, xyzvi, cvi] = \
            slice2 (- pyz, nvi, xyzvi, cvi)
        [nvj, xyzvj, cvj] = slice3 (m3, 1, None, None, 1, value = .5 * max (c) )
        [nvj, xyzvj, cvj] = \
            slice2 (- pyz, nvj, xyzvj, cvj)

        fma ()
        print "gnomon -- turn on gnomon"
        gnomon (1)
        clear3 ()
        # Make sure we don't draw till ready
        set_draw3_ (0)
        pl3tree (nv, xyzv) # , cv)
        pl3tree (nw, xyzw) # , cw)
        pl3tree (nvi, xyzvi) # , cvi)
        pl3tree (nvj, xyzvj) # , cvi)
        orient3 ()
        light3 (ambient = 0, diffuse = .5, specular = 1, sdir = [0, 0, -1])
        limits (square=1)
        palette ("gray.gp")
        demo5_light (1)
        paws ()

        print "spin3 animated rotation, use rot3 or orient3 for one frame"
        # don't want limits to autoscale during animation
        spin3 ()
        limits ( ) # back to autoscaling
        demo5_light (1)
        paws ()

        light3 ()
        gnomon (0)
        palette ("gray.gp")

        draw3 ( 1 )
        paws ()
        clear3 ()
        del nv, xyzv, cv, nw, xyzw, cw, nvi, xyzvi, cvi, nvj, xyzvj, cvj
        # Make sure we don't draw till ready
        set_draw3_ (0)
        for i in range (8) :
            [nv, xyzv, cv] = slice3 (m3, 1, None, None, 1, value = .9 * min (c) +
                i * (.9 * max (c) - .9 * min (c)) / 8.)
            [nv, xyzv, d1] = \
                slice2 (pxz, nv, xyzv, None)
            pl3tree (nv, xyzv)
        orient3 ()
        light3 (ambient = 0, diffuse = .5, specular = 1, sdir = [0, 0, -1])
        limits (square=1)
        palette ("heat.gp")
        demo5_light (1)
        paws ()
        spin3 ()
        limits ( ) # back to autoscaling
        demo5_light (1)
        paws ()
        demo5_light (1)
        paws ()

    if len (itest) == 0 or itest [0] == 5 :
        # Try bert's data
        f = PR ('./berts_plot')
        nums = array ( [63, 63, 49], Int)
        dxs = array ( [2.5, 2.5, 10.], Float )
        x0s = array ( [-80., -80., 0.0], Float )
        c = f.c

        m3 = mesh3 (nums, dxs, x0s, funcs = [transpose (c)])
        [nv, xyzv, dum] = slice3 (m3, 1, None, None, value = 6.5)
        fma ()
        clear3 ()
        print "gnomon -- turn on gnomon"
        gnomon (1)
        # Make sure we don't draw till ready
        set_draw3_ (0)
        palette ("rainbow.gp")
        pl3tree (nv, xyzv)
        orient3 ()
        light3 (diffuse = .2, specular = 1)
        limits (square=1)
        demo5_light (1)
        paws ()
        spin3 ()
        demo5_light (1)
        paws ()
    if len (itest) == 0 or itest [0] == 6 :
        # Try Bill's irregular mesh
        f = PR ("ball.s0001")
        ZLss = f.ZLstruct_shapesize
        ZLsc = f.ZLstruct_shapecnt
        ZLsn = f.ZLstruct_nodelist
        x = f.sap_mesh_coord0
        y = f.sap_mesh_coord1
        z = f.sap_mesh_coord2
        c = f.W_vel_data
        # Now we need to convert this information to avs-style data
        istart = 0 # beginning index into ZLstruct_nodelist
        NodeError = "NodeError"
        ntet = 0
        nhex = 0
        npyr = 0
        nprism = 0
        nz_tet = []
        nz_hex = []
        nz_pyr = []
        nz_prism = []
        for i in range (4) :
            if ZLss [i] == 4 : # TETRAHEDRON
                nz_tet = reshape (ZLsn [istart: istart + ZLss [i] * ZLsc [i]],
                         (ZLsc [i], ZLss [i]))
                ntet = ZLsc [i]
                istart = istart + ZLss [i] * ZLsc [i]
            elif ZLss[i] == 5 : # PYRAMID
                nz_pyr = reshape (ZLsn [istart: istart + ZLss [i] * ZLsc [i]],
                         (ZLsc [i], ZLss [i]))
                npyr = ZLsc [i]
                # Now reorder the points (bill has the apex last instead of first)
                nz_pyr = transpose (
                   take (transpose (nz_pyr), array ( [4, 0, 1, 2, 3]),axis=0))
                istart = istart + ZLss [i] * ZLsc [i]
            elif ZLss[i] == 6 : # PRISM
                nz_prism = reshape (ZLsn [istart: istart + ZLss [i] * ZLsc [i]],
                         (ZLsc [i], ZLss [i]))
                nprism = ZLsc [i]
                # now reorder the points (bill goes around a square face
                # instead of traversing the opposite sides in the same direction.
                nz_prism = transpose (
                   take (transpose (nz_prism), array ( [0, 1, 3, 2, 4, 5]),axis=0))
                istart = istart + ZLss [i] * ZLsc [i]
            elif ZLss[i] == 8 : # HEXAHEDRON
                nz_hex = reshape (ZLsn [istart: istart + ZLss [i] * ZLsc [i]],
                         (ZLsc [i], ZLss [i]))
                # now reorder the points (bill goes around a square face
                # instead of traversing the opposite sides in the same direction.
                nz_hex = transpose (
                   take (transpose (nz_hex), array ( [0, 1, 3, 2, 4, 5, 7, 6]),axis=0))
                nhex = ZLsc [i]
                istart = istart + ZLss [i] * ZLsc [i]
            else :
                raise NodeError, `ZLss[i]` + "is an incorrect number of nodes."

        m3 = mesh3 (x, y, z, funcs = [c], verts = [nz_tet, nz_pyr, nz_prism,
           nz_hex])
        [nv, xyzv, cv] = slice3 (m3, 1, None, None, 1, value = .9 * max (c) )
        pyz = plane3 ( array ([1, 0, 0], Float ), zeros (3, Float))
        pxz = plane3 ( array ([0, 1, 0], Float ), zeros (3, Float))

        # draw a colored plane first
        fma ()
        clear3 ()
        # Make sure we don't draw till ready
        set_draw3_ (0)
        [np, xyzp, vp] = slice3 (m3, pyz, None, None, 1)
        pl3tree (np, xyzp, vp, pyz, split = 0)
        palette ("rainbow.gp")
        orient3 ()
        limits (square=1)
        demo5_light (1)
        paws ()

        [nw, xyzw, cw] = slice3 (m3, 1, None, None, 1, value = .9 * min (c) )
        [nvi, xyzvi, cvi] = slice3 (m3, 1, None, None, 1, value = .1 * min (c) )
        [nvi, xyzvi, cvi] = \
            slice2 (- pyz, nvi, xyzvi, cvi)
        [nvj, xyzvj, cvj] = slice3 (m3, 1, None, None, 1, value = .1 * max (c) )
        [nvj, xyzvj, cvj] = \
            slice2 (- pyz, nvj, xyzvj, cvj)
        [nvii, xyzvii, cvii] = slice3 (m3, 1, None, None, 1,
           value = 1.e-12 * min (c) )
        [nvii, xyzvii, cvii] = \
            slice2 (- pyz, nvii, xyzvii, cvii)
        [nvjj, xyzvjj, cvjj] = slice3 (m3, 1, None, None, 1,
           value = 1.e-12 * max (c) )
        [nvjj, xyzvjj, cvjj] = \
            slice2 (- pyz, nvjj, xyzvjj, cvjj)

        fma ()
        print "gnomon -- turn on gnomon"
        gnomon (1)
        clear3 ()
        # Make sure we don't draw till ready
        set_draw3_ (0)
        pl3tree (nv, xyzv) # , cv)
        pl3tree (nw, xyzw) # , cw)
        pl3tree (nvi, xyzvi) # , cvi)
        pl3tree (nvj, xyzvj) # , cvj)
        pl3tree (nvii, xyzvii) # , cvii)
        pl3tree (nvjj, xyzvjj) # , cvjj)
        orient3 ()
        light3 (ambient = 0, diffuse = .5, specular = 1, sdir = [0, 0, -1])
        limits (square=1)
        palette ("gray.gp")
        demo5_light (1)
        paws ()
        palette ("heat.gp")
        paws ()


    if len (itest) == 0 or itest [0] == 7 :
        # test plwf on the sombrero function
        # compute sombrero function
        x = arange (-20, 21, dtype = Float)
        y = arange (-20, 21, dtype = Float)
        z = zeros ( (41, 41), Float)
        r = sqrt (add.outer ( x ** 2, y **2)) + 1e-6
        z = sin (r) / r
        fma ()
        clear3 ()
        gnomon (0)
        # Make sure we don't draw till ready
        set_draw3_ (0)
        palette ("rainbow.gp")
        limits (square=1)
        orient3 ()
        light3 ()
        plwf (z, fill = z, ecolor = "black")
        [xmin, xmax, ymin, ymax] = draw3 (1)
        limits (xmin, xmax, ymin, ymax)
        paws ()
        ##### Try smooth contours, log mode
        [nv, xyzv, dum] = slice3mesh (x, y, z)
        zmult = max (max (abs (x)), max (abs (y)))
        plzcont (nv, xyzv, contours = 20, scale = "normal")
        [xmin, xmax, ymin, ymax] = draw3 (1)
        limits (xmin, xmax, ymin, ymax)
        paws ()
        plzcont (nv, xyzv, contours = 20, scale = "lin", edges=1)
        [xmin, xmax, ymin, ymax] = draw3 (1)
        limits (xmin, xmax, ymin, ymax)
        paws ()
        plwf (z, fill = z, shade = 1, ecolor = "black")
        [xmin, xmax, ymin, ymax] = draw3 (1)
        limits (xmin, xmax, ymin, ymax)
        paws ()
        plwf (z, fill = z, shade = 1, edges = 0)
        [xmin, xmax, ymin, ymax] = draw3 (1)
        limits (xmin, xmax, ymin, ymax)
        paws ()
        light3(diffuse=.2,specular=1)
        print "light3,sdir=[cos(theta),.25,sin(theta)]  -- movie"
        making_movie = 1
        movie(demo5_light, lims = [xmin, xmax, ymin, ymax])
        making_movie = 0
        fma()
        demo5_light(1)
        paws ()
        plwf (z, fill = None, shade = 1, edges = 0)
        [xmin, xmax, ymin, ymax] = draw3 (1)
        palette("gray.gp")
        limits (xmin, xmax, ymin, ymax)
        paws ()


    if len (itest) == 0 or itest [0] == 8 :
        # test pl3surf on the sombrero function
        # compute sombrero function
        nc1 = 100
        nv1 = nc1 + 1
        br = - (nc1 / 2)
        tr = nc1 / 2 + 1
        x = arange (br, tr, dtype = Float) * 40. / nc1
        y = arange (br, tr, dtype = Float) * 40. / nc1
        z = zeros ( (nv1, nv1), Float)
        r = sqrt (add.outer ( x ** 2, y **2)) + 1e-6
        z = sin (r) / r
        # In order to use pl3surf, we need to construct a mesh
        # using mesh3. The way I am going to do that is to define
        # a function on the 3d mesh so that the sombrero function
        # is its 0-isosurface.
        z0 = min (ravel (z))
        z0 = z0 - .05 * abs (z0)
        maxz = max (ravel (z))
        maxz = maxz + .05 * abs (maxz)
        zmult = max (max (abs (x)), max (abs (y)))
        dz = (maxz - z0)
        nxnynz = array ( [nc1, nc1, 1], Int)
        dxdydz = array ( [1.0, 1.0, zmult*dz], Float )
        x0y0z0 = array ( [float (br), float (br), z0*zmult], Float )
        meshf = zeros ( (nv1, nv1, 2), Float )
        meshf [:, :, 0] = zmult*z - (x0y0z0 [2])
        meshf [:, :, 1] = zmult*z - (x0y0z0 [2] + dxdydz [2])

        m3 = mesh3 (nxnynz, dxdydz, x0y0z0, funcs = [meshf])
        fma ()
        # Make sure we don't draw till ready
        set_draw3_ (0)
        pldefault(edges=0)
        [nv, xyzv, col] = slice3 (m3, 1, None, None, value = 0.)
        orient3 ()
        pl3surf (nv, xyzv)
        lim = draw3 (1)
        limits (lim [0], lim [1], 1.5*lim [2], 1.5*lim [3])
        palette ("gray.gp")
        paws ()
        # Try new slicing function to get color graph
        [nv, xyzv, col] = slice3mesh (nxnynz [0:2], dxdydz [0:2], x0y0z0 [0:2],
           zmult * z, color = zmult * z)
        pl3surf (nv, xyzv, values = col)
        lim = draw3 (1)
        dif = 0.5 * (lim [3] - lim [2])
        limits (lim [0], lim [1], lim [2] - dif, lim [3] + dif)

        palette ("rainbow.gp")
        paws ()
        palette ("heat.gp")
        # Try plzcont--see if smooth mode possible
        plzcont (nv, xyzv)
        draw3 (1)
        paws ()
        plzcont (nv, xyzv, contours = 20)
        draw3 (1)
        paws ()
        plzcont (nv, xyzv, contours = 20, scale = "log")
        draw3(1)
        paws ()
        plzcont (nv, xyzv, contours = 20, scale = "normal")
        draw3(1)
        paws ()
    if len (itest) == 0 or itest [0] == 9 :
        vsf = 0.
        c = 1
        s = 1000.
        kmax = 25
        lmax = 35
        # The following computations define an interesting 3d surface.

        xr = multiply.outer (
           arange (1, kmax + 1, dtype = Float), ones (lmax, Float))
        yr = multiply.outer (
           ones (kmax, Float), arange (1, lmax + 1, dtype = Float))
        zt = 5. + xr + .2 * rand (kmax, lmax)   # ranf (xr)
        rt = 100. + yr + .2 * rand (kmax, lmax)   # ranf (yr)
        z = s * (rt + zt)
        z = z + .02 * z * rand (kmax, lmax)   # ranf (z)
        ut = rt/sqrt (rt ** 2 + zt ** 2)
        vt = zt/sqrt (rt ** 2 + zt ** 2)
        ireg =  multiply.outer ( ones (kmax, Float), ones (lmax, Float))
        ireg [0:1, 0:lmax]=0
        ireg [0:kmax, 0:1]=0
        ireg [1:15, 7:12]=2
        ireg [1:15, 12:lmax]=3
        ireg [3:7, 3:7]=0
        freg=ireg + .2 * (1. - rand (kmax, lmax))  # ranf (ireg))
        freg=array (freg, Float)
        #rt [4:6, 4:6] = -1.e8
        z [3:10, 3:12] = z [3:10, 3:12] * .9
        z [5, 5] = z [5, 5] * .9
        z [17:22, 15:18] = z [17:22, 15:18] * 1.2
        z [16, 16] = z [16, 16] * 1.1
        orient3 ()
        plwf (freg, shade = 1, edges = 0)
        [xmin, xmax, ymin, ymax] = draw3 (1)
        limits (xmin, xmax, ymin, ymax)
        paws ()
        nxny = array ( [kmax - 1, lmax - 1])
        x0y0 = array ( [0., 0.])
        dxdy = array ( [1., 1.])
        [nv, xyzv, col] = slice3mesh (nxny, dxdy, x0y0, freg)
        [nw, xyzw, col] = slice3mesh (nxny, dxdy, x0y0, freg + ut)
        pl3tree (nv, xyzv)
        pl3tree (nw, xyzw)
        draw3 (1)
        limits ( )
        paws ()

        light3 (ambient = 0, diffuse = .5, specular = 1, sdir = [0, 0, -1])
        demo5_light (1)
        paws ()

        [nv, xyzv, col] = slice3mesh (nxny, dxdy, x0y0, freg, color = freg)
        pl3surf (nv, xyzv, values = col)
        draw3 (1)
        palette ("rainbow.gp")
        paws ()
        [nv, xyzv, col] = slice3mesh (nxny, dxdy, x0y0, freg, color = z)
        pl3surf (nv, xyzv, values = col)
        draw3 (1)
        paws ()
        palette ("stern.gp")
        paws ()
        [nv, xyzv, col] = slice3mesh (nxny, dxdy, x0y0, z, color = z)
        pl3surf (nv, xyzv, values = col)
        orient3(phi=0,theta=0)
        draw3 (1)
        paws ()
        set_draw3_ (0)
        palette ("gray.gp")
        light3 ( diffuse=.1, specular=1., sdir=array([0,0,-1]))
        pl3surf (nv, xyzv)
        draw3 (1)
        paws ()

#     spin3 ()
#     paws ()

    hcp_finish ()