1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
|
## Automatically adapted for scipy Oct 31, 2005 by
# Copyright (c) 1996, 1997, The Regents of the University of California.
# All rights reserved. See Legal.htm for full text and disclaimer.
# The following is so I know about arrays:
from scipy import *
from numpy.core.umath import *
from shapetest import *
from surface import *
from graftypes import *
from plane import *
from slice3 import *
class Mesh3d ( Surface ) :
"""m = Mesh3d ( <keyword arguments> ) will create a mesh with
coordinates and various other characteristics. The keywords are
as follows:
For all meshes:
color_card = <value> specifies which color card you wish
to use, e. g., "rainbowhls" (the default), "random",
etc. Although a characteristic of a Graph2d, it can
be a Surface characteristic since 'link'ed surfaces
can have different color cards.
This is not implemented for Gist. Instead, Gist
allows the option of a "split palette", which causes
isosurfaces to be shaded and other surfaces to be
colored by a subset of the current (or specified)
palette.
opt_3d = <value> where <value> is a string or a sequence
of strings giving the 3d or 4d surface characteristics.
A surface is colored by height in z if a 3d option is
specified, and by the value of the function c if a 4d
option is specified. With a wire grid option, the grid
is colored; with a flat option, the quadrilaterals set
off by grid points are colored; with a smooth option,
the surface itself is colored by height; and with an iso
option, the contour lines are colored. flat and iso options
may be used together in any combination. wire grid options
are independent of the other options. Legal arguments for
set_3d_options are:
'wm'--monochrome wire grid; 'w3' and 'w4'--3d and 4d
coloring of wire grid.
'f3' and 'f4'--flat 3d and 4d coloring options.
'i3' and 'i4'--3d and 4d isoline (contour line) options.
's3' and 's4'--3d and 4d smooth coloring options.
For Gist plots, currently only 'wm', 'f3', and 'f4'
are currently available. If others are specified, an
intelligent guess will be made.
mesh_type = <string> in one of the wire modes, tells what
form the wire grid takes: "x"--x lines only; "y": y lines only;
"xy": both a lines and y lines.
Not implemented for Gist plots.
mask = <string> controls hidden line removal. Allowed values
are "none" : transparent graph; "min": simple
masking; "max" : better masking; "sort": slowest but
most sophisticated.
Only the "none" and "sort" are available for Gist.
z_c_switch = 0 or 1 : set to 1 means switch z and c in the plot.
z_contours_scale, c_contours_scale = "lin" or "log"
z_contours_array, c_contours_array = actual array of numbers
to use for contours
number_of_z_contours, number_of_c_contours = <integer>
specifies how many contours to use; they will be computed
automatically based on the data.
The last six options are not available in Gist.
For nonstructured meshes only:
x = <values> , y = <values> , z = <values> three vectors
of equal lengths giving the coordinates of the nodes of
a nonstructured mesh.
c = <values> , a vector of the same size as x, y, and z
giving a data value at each of the points specified.
c could also be an array of such vectors, when
isosurfaces of more than one function are to be plotted.
avs = 0 or 1: if 1, the input data represents a nonstructured
mesh in a sort of AVS format, which will be explained in
more detail below. The data will be translated into the
Narcisse format prior to being sent to Narcisse.
cell_descr = <integer array> if present, this keyword signifies
a nonstructured mesh submitted in the Narcisse format,
as explained in the Narcisse manual. For nonstructured
mesh data, one of these two keywords must be present.
In the case avs = 1, at least one of the following four keywords
(hex, tet, prism, or pyr) must be present also:
hex = [ <list of hexahedral cell data> ] The entries in the
list (in order) must be:
an integer number n_zones, which is the number of hex
cells in the mesh; and a matrix nz whose dimensions are
n_zones by 8; nz [i][0], nz [i][1], ... nz [i][7] give
the indices of the 8 vertices of the ith zone in canonical
order (one side in the outward normal direction, then the
corresponding vertices of the opposite side in the inward
normal direction).
tet = [ <list of tetrahedral cell data> ] The list is the
same format as for hex data. The matrix nz will be
n_zones by 4, and each row gives the indices of the
apex and then the base in inward normal order.
prism = [ <list of prismatic cell data> ] The list is the
same format as for hex data. The matrix nz will be
n_zones by 6, and each row gives the indices of one
triangular side in the outward normal direction, then
the corresponding vertices of the opposite side in the
inward normal direction.
pyr = [ <list of pyramidal cell data> ] The list is the
same format as for hex data. The matrix nz will be
n_zones by 5, and each row gives the indices of the
apex and then the base in inward normal order.
In the case of avs = 0, the following keywords are all
required:
cell_descr = <values> , a vector of integers giving the
description of the cells of the mesh, as specified in
the Narcisse manual.
no_cells = <integer value> , the number of cells in the mesh.
(Here cells refers to the number of faces of cells).
For structured meshes only:
x = <values> , y = <values> , z = <values> three vectors
giving the coordinates of the nodes of a structured
rectangular mesh.
c = <values> , a three-dimensional array whose [i, j, k]
element gives the associated data value at (x [i], y [j],
z [k]). Could also be one less in each direction,
giving a cell-centered quantity.
c could also be an array of such arrays, when
isosurfaces of more than one function are to be plotted.
"""
_MeshInitError = "MeshInitError"
def type (self) :
return Mesh3dType
def __init__ ( self , *kwds , ** keywords ) :
if len (kwds) == 1 :
keywords = kwds[0]
self.cell_dict = {}
if keywords.has_key ("hex") :
self.cell_dict ["hex"] = keywords ["hex"]
if keywords.has_key ("tet") :
self.cell_dict ["tet"] = keywords ["tet"]
if keywords.has_key ("prism") :
self.cell_dict ["prism"] = keywords ["prism"]
if keywords.has_key ("pyr") :
self.cell_dict ["pyr"] = keywords ["pyr"]
if (keywords.has_key ("avs") and keywords ["avs"] == 0) or \
(not keywords.has_key ("avs")
and not keywords.has_key ("cell_descr")) :
# structured case works basically just like a Surface
Surface.__init__ ( self, keywords )
self.structured = 1
else : # nonstructured case, at least initialize the generics
self.structured = 0
self.generic_init ( keywords )
if keywords.has_key ("avs") :
self.avs = keywords ["avs"]
else :
self.avs = None
if not keywords.has_key ("x") or \
not keywords.has_key ("y") or \
not keywords.has_key ("z") or \
not keywords.has_key ("c") :
raise self._MeshInitError , \
"x, y, z, and c keywords required for nonstructured mesh."
self.x = keywords ["x"]
self.y = keywords ["y"]
self.z = keywords ["z"]
self.c = keywords ["c"]
if keywords.has_key ("cell_descr" ) : # already there
if not keywords.has_key ("no_cells") :
raise self._MeshInitError , \
"Keyword no_cells is required if avs is not specified."
self.cell_descr = keywords ["cell_descr"]
self.number_of_cells = keywords ["no_cells"]
elif not keywords.has_key ("avs") :
raise self._MeshInitError , \
"keywords must include avs = 1 or else cell_descr = values."
# Conversion tables for AVS to Narcisse formats
_cell_types = ["tet", "pyr", "prism", "hex"]
_no_of_vertices = { "hex" : 8, "tet" : 4, "pyr" : 5, "prism" : 6 }
_no_of_rect_faces = { "hex" : 6, "tet" : 0, "pyr" : 1, "prism" : 3 }
_no_of_tri_faces = { "hex" : 0, "tet" : 4, "pyr" : 4, "prism" : 2 }
# The next few items give the standard numbering of the faces of
# the various cells.
_hex_triangular_faces = [ ]
_tet_triangular_faces = [ [0, 1, 2], [0, 3, 1], [0, 2, 3], [1, 3, 2]]
_pyr_triangular_faces = [ [0, 1, 2], [0, 4, 1], [0, 3, 4], [0, 2, 3]]
_prism_triangular_faces = [ [0, 1, 2], [3, 5, 4]]
_hex_rectangular_faces = [ [0, 1, 2, 3], [1, 0, 4, 5], [2, 1, 5, 6],
[3, 2, 6, 7], [0, 3, 7, 4], [4, 7, 6, 5]]
_tet_rectangular_faces = [ ]
_pyr_rectangular_faces = [ [1, 4, 3, 2]]
_prism_rectangular_faces = [ [0, 3, 4, 1], [1, 4, 5, 2], [2, 5, 3, 0]]
_tri_face_numbers = { "hex" : _hex_triangular_faces ,
"tet" : _tet_triangular_faces ,
"pyr" : _pyr_triangular_faces ,
"prism" : _prism_triangular_faces }
_rect_face_numbers = { "hex" : _hex_rectangular_faces ,
"tet" : _tet_rectangular_faces ,
"pyr" : _pyr_rectangular_faces ,
"prism" : _prism_rectangular_faces }
def get_verts_list (self) :
"""get_verts_list () returns a list of vertex arrays in the
form wanted by mesh3. Note: if they are in avs order,
they need to be put into Gist order (pyramids and tets
are OK, only prisms and hexahedra need vertices permuted).
"""
verts = []
for k in self._cell_types :
if self.cell_dict.has_key (k) :
n_z = self.cell_dict[k][1]
if n_z.shape [1] == 8 :
verts.append (
take (n_z, array ( [0, 1, 3, 2, 4, 5, 7, 6]),axis=0))
elif n_z.shape [1] == 6 :
verts.append (
take (n_z, array ( [3, 0, 4, 1, 5, 2]),axis=0))
else :
verts.append (n_z)
if len (verts) == 1 :
verts = verts [0]
return verts
def create_Narcisse_format ( self ) :
"""create_Narcisse_format ( <keyword dict> ) is an internal
routine which takes input in (essentially) avs format and
converts it into the format desired by Narcisse.
"""
if hasattr (self, "cell_descr") : # don't calculate it again.
return
if not self.cell_dict.has_key ("hex") \
and not self.cell_dict.has_key ("tet") \
and not self.cell_dict.has_key ("prism") \
and not self.cell_dict.has_key ("pyr") :
raise _MeshInitError, \
"In avs mode, at least one of the keywords " + \
"(hex, tet, pyr, prism) is required."
n_zones = { }
nz = { }
for k in self._cell_types :
if self.cell_dict.has_key (k) :
n_zones [k] = self.cell_dict [k][0]
nz [k] = self.cell_dict[k][1]
else :
n_zones [k] = 0
nz [k] = [ ]
self.cell_descr = zeros (30 * n_zones ["hex"] +
21 * n_zones ["pyr"] +
16 * n_zones ["tet"] +
23 * n_zones ["prism"], Int)
self.number_of_cells = n_zones ["hex"] * 6 + n_zones ["pyr"] * 5 + \
n_zones ["tet"] * 4 + n_zones ["prism"] * 5
n = 0
start = 0
# Fill the start of the cell_descriptor array
# The first part is simply a sequence of indices into the second
# part of the self.cell_descr array; Each entry tells where the indices
# for this particular face begin.
cell_j = 0
for k in self._cell_types :
nrf = self._no_of_rect_faces [k]
ntf = self._no_of_tri_faces [k]
for i in range (start, start + n_zones [k]) :
for j in range (ntf) : # count triangular faces first
n = n + 3
self.cell_descr [cell_j] = n
cell_j = cell_j + 1
for j in range (nrf) : # count rectangles next
n = n + 4
self.cell_descr [cell_j] = n
cell_j = cell_j + 1
start = start + n_zones [k]
# Next we go through each type of cell and enter the indices
# of its faces, face-by-face, triangular sides first by convention.
for k in self._cell_types :
nrf = self._no_of_rect_faces [k]
ntf = self._no_of_tri_faces [k]
n_z = nz [k]
for i in range (start, start + n_zones [k]) :
n_z_ = n_z [i - start]
for j in range (ntf) : # do triangular faces first
ind = self._tri_face_numbers [k][j]
for l in range (3) :
self.cell_descr [cell_j + l] = n_z_ [ind [l]]
cell_j = cell_j + 3
for j in range (nrf) : # do rectangular faces next
ind = self._rect_face_numbers [k][j]
for l in range (4) :
self.cell_descr [cell_j + l] = n_z_ [ind [l]]
cell_j = cell_j + 4
start = start + n_zones [k]
def new ( self , ** keywords ) :
"""new (...keyword arguments...) allows you to reuse a
previously defined mesh.
"""
del self.x, self.y, self.z, self.c, self.color_card, self.opt_3d, \
self.mask, self.z_c_switch, self.z_contours_scale, \
self.c_contours_scale, self.z_contours_array, \
self.c_contours_array, self.number_of_z_contours, \
self.number_of_c_contours, self.mesh_type
if not self.structured :
del self.cell_descr, self.number_of_cells
self.__init__ ( keywords )
from plane import *
class Slice :
"""
Class Slice is used to contain a geometric description of
an isosurface or plane Slice of a Mesh3d object. It is
created by the builtin function sslice, defined later in
this module.
Slice is created as follows:
Slice (nv, xyzv, [, val [, plane [, iso [, opt_3d]]]])
where :
nv is a one-dimensional integer array whose ith entry is the
number of vertices of the ith face.
xyzv is a two-dimensional array dimensioned sum (nv,axis=0) by 3.
The first nv [0] triples are the vertices of face [0],
the next nv [1] triples are the vertices of face [1], etc.
val (if present) is an array the same length as nv whose
ith entry specifies a color for face i.
plane (if present) says that this is a plane Slice, and
all the vertices xyzv lie in this plane.
iso (if present) says that this is the isosurface for
the given value.
opt_3d (if present) specifies the 3d options used to
color the slice.
mask (if present) specifies how the surface is to be masked.
contours (if present) is either an array of contour values
or an integer giving the number of contours.
scale (if present) is the contour scale: "lin", "log",
or "normal".
edges (if present) is 1 for showing edges, 0 for not.
A Slice object or two Slice objects are created by a call
to the function sslice (q. v.). The function sslice accepts
either a mesh and a specification of how to slice it
(isosurface or plane), or else a previously created Slice,
a plane to slice it with, and whether you want to keep
the resulting "front" Slice or both Slices.
"""
def type (self) :
return Slice3dType
def __init__ (self, nv, xyzv, val = None, plane = None, iso = None,
smooth = None, opt_3d = ["wm", "f3"], mask = "max", contours = None,
scale = "lin", edges = 0) :
self.nv = nv
self.xyzv = xyzv
self.val = val
self.plane = plane
self.iso = iso
self.smooth = smooth
if type (opt_3d) != ListType :
self.opt_3d = [opt_3d]
else :
self.opt_3d = opt_3d
self.mask = mask
self.contours = contours
self.scale = scale
self.edges = edges
self.mesh_type = "xy"
self.z_c_switch = 0
self.z_contours_scale = scale
self.c_contours_scale = scale
if type (self.contours) == IntType or self.contours is None :
self.number_of_z_contours = self.contours
self.number_of_c_contours = self.contours
self.z_contours_array = None
self.c_contours_array = None
elif type (self.contours) == ArrayType :
self.z_contours_array = self.contours
self.c_contours_array = self.contours
self.number_of_z_contours = len (self.contours)
self.number_of_c_contours = len (self.contours)
if edges == 0 :
self.edges = "w3" in self.opt_3d or \
"w4" in self.opt_3d or \
"wm" in self.opt_3d
def __del__ (self) :
del self.nv
del self.xyzv
if self.val is not None: del self.val
if self.plane is not None: del self.plane
del self.mask
if self.iso is not None: del self.iso
if self.smooth is not None: del self.smooth
del self.opt_3d
if self.contours is not None: del self.contours
del self.scale
del self.edges
def new (self, nv, xyzv, val = None, plane = None, iso = None,
smooth = None, opt_3d = ["wm", "f3"], mask = "max", contours = None,
scale = "lin", edges = 0) :
del self.nv
del self.xyzv
del self.val
del self.plane
del self.mask
del self.iso
del self.smooth
del self.opt_3d
del self.contours
del self.scale
del self.edges
self.__init__ (nv, xyzv, val, plane, iso, smooth, opt_3d,
mask, contours, scale, edges)
def set ( self , ** keywords ) :
""" set (...keyword arguments...) allows you to set individual
Slice characteristics. No error checking is done.
"""
for k in keywords.keys ():
setattr (self, k, keywords [k])
if type (self.opt_3d) != ListType :
self.opt_3d = [self.opt_3d]
if self.edges == 0 :
self.edges = "w3" in self.opt_3d or \
"w4" in self.opt_3d or \
"wm" in self.opt_3d
_SliceError = "SliceError"
def sslice ( v1, v2, varno = 1, nslices = 1, opt_3d = None) :
"""This function slices a Mesh3d or a previous Slice object,
and returns a new Slice object, depending on how it is called.
sslice (m, plane, varno = 1)
returns a plane Slice through the specified mesh m. varno
is the number of the variable to be used to color the Slice
(1-based).
sslice (m, val, varno = 1)
returns an isosurface Slice of m. varno is the number of
the variable with respect to which the Slice is taken (1-based)
and val is its value on the isosurface. varno can be let default
to 1 if there is only one function to worry about.
sslice (s, plane, nslices = 1)
slices the isosurface s and returns the part in "front" of the
plane if nslices == 1, or returns a pair of Slices [front, back]
if nslices == 2. If s is a Surface, then this operation will
produce a Slice or pair of Slices from the given Surface.
N. B. If you want just the "back" surface, you can achieve this
by calling sslice with - plane instead of plane.
The opt_3d argument can be used to overrule defaults, which
are intelligently figured out, but may not always be what you want.
"""
if v1.type () == Mesh3dType :
if type (v1.c) != ListType :
funcs = [v1.c]
else :
funcs = v1.c
if not hasattr (v2, "type") or v2.type () != PlaneType :
try :
val = float (v2)
except :
raise _SliceError, \
"second argument is not coercible to float."
plane = None
else :
plane = v2
val = None
if opt_3d is None :
if plane is not None:
opt_3d = ["wm", "f4"]
else :
opt_3d = ["f4"]
# First we build a "mesh3" if v1 does not already have one.
if v1.structured : #and not hasattr (v1, "m3") :
setattr (v1, "m3", mesh3 (v1.x, v1.y, v1.z, funcs = funcs))
elif not v1.structured and v1.avs == 1 : #and not hasattr (v1, "m3") :
if no_of_dims (v1.x) == 3 and \
no_of_dims (v1.y) == 3 and \
no_of_dims (v1.z) == 3 :
setattr (v1, "m3", mesh3 (array ( [v1.x, v1.y, v1.z], Float),
funcs = funcs))
elif no_of_dims (v1.x) == 1 and \
no_of_dims (v1.y) == 1 and \
no_of_dims (v1.z) == 1 :
setattr (v1, "m3", mesh3 (v1.x, v1.y, v1.z, funcs = funcs,
verts = v1.get_verts_list ()))
else :
raise _SliceError, \
"x, y, and z must have either 1 or 3 dimensions."
elif not hasattr (v1, "m3") :
raise _SliceError, \
"Option not implemented."
# A Yorick 'mesh3' object now exists, slice it as specified.
if plane is None : # An isosurface Slice
[nv, xyzv, dum] = slice3 (v1.m3, varno, None, None, value = val)
return Slice (nv, xyzv, iso = val, opt_3d = opt_3d)
else : # a plane Slice
[nv, xyzv, val] = slice3 (v1.m3, plane.rep (), None, None, varno )
return Slice (nv, xyzv, val, plane = plane, opt_3d = opt_3d)
elif v1.type () == SurfaceType :
plane = v2
if not hasattr (v2, "type") or v2.type () != PlaneType :
raise _SliceError, \
"Second argument is not a Plane."
if v1.z_c_switch :
z = v1.c
c = v1.z
if "s3" in v1.opt_3d :
scale = v1.c_contours_scale
if v1.c_contours_array is not None:
contours = v1.c_contours_array
else :
contours = v1.number_of_c_contours
elif "s4" in v1.opt_3d :
scale = v1.z_contours_scale
if v1.z_contours_array is not None:
contours = v1.z_contours_array
else :
contours = v1.number_of_z_contours
else :
z = v1.z
c = v1.c
if "s3" in v1.opt_3d :
scale = v1.z_contours_scale
if v1.z_contours_array is not None:
contours = v1.z_contours_array
else :
contours = v1.number_of_z_contours
elif "s4" in v1.opt_3d :
scale = v1.c_contours_scale
if v1.c_contours_array is not None:
contours = v1.c_contours_array
else :
contours = v1.number_of_c_contours
edges = "w3" in v1.opt_3d or "w4" in v1.opt_3d or "wm" in v1.opt_3d \
or "i3" in v1.opt_3d or "i4" in v1.opt_3d
if "s4" in v1.opt_3d :
[nv, xyzv, col] = slice3mesh (v1.x, v1.y, z, color = c, smooth = 1)
elif "f3" in v1.opt_3d :
[nv, xyzv, col] = slice3mesh (v1.x, v1.y, z, color = z, smooth = 0)
contours = None
scale = "lin"
elif "f4" in v1.opt_3d :
[nv, xyzv, col] = slice3mesh (v1.x, v1.y, z, color = c, smooth = 0)
contours = None
scale = "lin"
else :
[nv, xyzv, col] = slice3mesh (v1.x, v1.y, z)
contours = None
scale = "lin"
if nslices == 1 :
[nv, xyzv, col] = slice2 (plane.rep (), nv, xyzv, col)
return Slice (nv, xyzv, col, opt_3d = v1.opt_3d, mask = v1.mask,
contours = contours, scale = scale, edges = edges)
elif nslices == 2 :
[nv, xyzv, col, nb, xyzb, valb] = slice2x (plane.rep (),
nv, xyzv, col)
return [Slice (nv, xyzv, col, opt_3d = v1.opt_3d, mask = v1.mask,
contours = contours, scale = scale, edges = edges),
Slice (nb, xyzb, valb, opt_3d = v1.opt_3d, mask = v1.mask,
contours = contours, scale = scale, edges = edges)]
else :
raise _SliceError, "Illegal number (" + `nslices` + \
") of slices requested."
elif v1.type () == Slice3dType :
plane = v2
if not hasattr (v2, "type") or v2.type () != PlaneType :
raise _SliceError, \
"Second argument is not a Plane."
if nslices == 1 :
[nv, xyzv, val] = slice2 (plane.rep (), v1.nv, v1.xyzv,
v1.val)
return Slice (nv, xyzv, val, plane = v1.plane, iso = v1.iso,
opt_3d = v1.opt_3d)
elif nslices == 2 :
[nf, xyzf, valf, nb, xyzb, valb] = slice2x (plane.rep (), v1.nv,
v1.xyzv, v1.val)
return [Slice (nf, xyzf, valf, plane = v1.plane, iso = v1.iso,
opt_3d = v1.opt_3d),
Slice (nb, xyzb, valb, plane = v1.plane, iso = v1.iso,
opt_3d = v1.opt_3d)]
else :
raise _SliceError, "Illegal number (" + `nslices` + \
") of slices requested."
else :
raise _SliceError, "Can only slice a Mesh3d or another Slice."
|