1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
|
## Automatically adapted for scipy Oct 31, 2005 by
# $Id: pl3d.py 2183 2006-08-29 10:30:44Z oliphant $
# Copyright (c) 1996, 1997, The Regents of the University of California.
# All rights reserved. See Legal.htm for full text and disclaimer.
from scipy import *
from shapetest import *
from yorick import *
from numpy import *
from gistfuncs import *
# PL3D.PY
# Viewing transforms and other aids for 3D plotting.
#
# $Id: pl3d.py 2183 2006-08-29 10:30:44Z oliphant $
# Copyright (c) 1997. The Regents of the University of California.
# All rights reserved.
"""
General overview of module pl3d:
(1) Viewing transform machinery. Arguably the simplest model
is the CAD/CAM notion that the object you see is oriented
as you see it in the current picture. You can then move
it left, right, up, down, or toward or away from you,
or you can rotate it about any of the three axes (horizontal,
vertical, or out of the screen). The xyz coordinates of the
object remains unchanged throughout all of this, but this
object coordinate system changes relative to the fixed
xyz of the viewer, in which x is always to the right, y is
up, and z is directed out of the screen. Initially, the
two coordinate systems coincide.
rot3 (xangle,yangle,zangle)
Rotate the object about viewer's x-axis by xangle, then
about viewer's y-axis by yangle, then about viewer's
z-axis by zangle
mov3 (xchange,ychange,zchange)
Move the object by the specified amounts.
setz3 (zcamera)
The "camera" is located at (0,0,zcamera) in the viewer's
coordinate system, looking in the minus-z direction.
Initially, zcamera is very large, and the magnification
factor is correspondingly large, giving an isometric view.
Decreasing zcamera makes the perspective more extreme.
If parts of the object are behind the camera, strange things
may happen.
undo3 ()
undo3 (n)
Undo the last N (default 1) viewpoint commands (rot3, mov3,
or setz3). Up to 100 viewpoint changes are remembered.
viewpoint= save3()
...
restore3 (viewpoint)
The current viewpoint transformation can be saved and later
restored.
gnomon (on_off)
Toggle the gnomon (a simple display showing the orientation
of the xyz axes of the object).
"""
# ------------------------------------------------------------------------
def set_draw3_ ( n ) :
"""
set_draw3_ ( 0 | 1 ) is used to set the global draw3_,
which controls whether the function draw3 actually shows a drawing.
"""
global _draw3
_draw3 = n
def setrot3_ (x) :
# ZCM 2/21/97 change reflects the fact that I hadn't realized
# that car and cdr, as functions, return the item replaced.
global _draw3_list
oldx = _draw3_list [0]
_draw3_list [0] = x
undo3_set_ (setrot3_, oldx)
def rot3 (xa = 0., ya = 0., za = 0.) :
"""
rot3 (xa, ya, za)
rotate the current 3D plot by XA about viewer's x-axis,
YA about viewer's y-axis, and ZA about viewer's z-axis.
SEE ALSO: orient3, mov3, aim3, setz3, undo3, save3, restore3, light3
"""
x = array ([1.,0.,0.], Float)
y = array ([0.,1.,0.], Float)
z = array ([0.,0.,1.], Float)
[x, y] = rot3_ (za, x, y)
[z, x] = rot3_ (ya, z, x)
[y, z] = rot3_ (xa, y, z)
# n. b. matrixMultiply has the unfortunate effect of destroying
# the matrix that calls it.
gr3 = array (getrot3_ (), copy = 1)
setrot3_ (transpose (dot (transpose (gr3), array ( [x, y, z]))))
def rot3_ (a, x, y) :
ca = cos (a)
sa = sin (a)
return [multiply (ca, x) + multiply (sa, y), multiply (-sa, x) + multiply (ca, y)]
def mov3 ( xa = 0., ya = 0., za = 0. ) :
"""
mov3 ( [xa [, ya [, za]]])
move the current 3D plot by XA along the viewer's x axis,
YA along the viewer's y axis, and ZA along the viewer's z axis.
SEE ALSO: rot3, orient3, setz3, undo3, save3, restore3, light3
"""
gr = dot (transpose (gr), transpose (xa))
setorg3_ ( getorg3_ () - gr)
def aim3 ( xa = 0., ya = 0., za = 0. ) :
"""
aim3 ( [xa [, ya [, za]]])
move the current 3D plot to put the point (XA, YA, ZA) in object
coordinates at the point (0, 0, 0) -- the aim point -- in the
viewer's coordinates. If any of the XA, YA, or ZA is nil, it defaults
SEE ALSO: mov3, rot3, orient3, setz3, undo3, save3, restore3, light3
"""
setorg3_ (x)
_ZcError = "ZcError"
def setz3 ( zc = None ) :
"""
setz3 ( [zc] )
Set the camera position to z = ZC (x = y = 0) in the viewer's coordinate
system. If zc is None, set the camera to infinity (default).
SEE ALSO: rot3, orient3, undo3, save3, restore3, light3
"""
if not is_scalar (zc) :
raise _ZcError, "camera position must be scalar."
setzc3_ (zc)
def orient3 ( ** kw ) :
"""
orient3 ( [phi = val1, theta = val2] )
Set the orientation of the object to (PHI, THETA). Orientations
are a subset of the possible rotation matrices in which the z axis
of the object appears vertical on the screen (that is, the object
z axis projects onto the viewer y axis). The THETA angle is the
angle from the viewer y axis to the object z axis, positive if
the object z axis is tilted towards you (toward viewer +z). PHI is
zero when the object x axis coincides with the viewer x axis. If
neither PHI nor THETA is specified, PHI defaults to - pi / 4 and
THETA defaults to pi / 6. If only PHI is specified, THETA remains
unchanged, unless the current THETA is near pi / 2, in which case
THETA returns to pi / 6, or unless the current orientation does
not have a vertical z axis, in which case THETA returns to its
default.
Unlike rot3, orient3 is not a cumulative operation.
"""
# Notes with regard to global variables: (ZCM 2/21/97)
# _orient3_phi, _orient3_theta, the default orientation angles,
# are known and referred to only in this routine. I have started
# them with an underscore, too, to make them inaccessible
# from outside this module.
# phi and theta need not be global here since they are recalculated
# each time this routine is called.
global _orient3_phi, _orient3_theta
try :
dummy = _orient3_theta
except :
_orient3_theta = pi / 6.
try :
dummy = _orient3_phi
except :
_orient3_phi = - pi / 4.
if kw.has_key ("phi") and kw ["phi"] == None :
kw ["phi"] = _orient3_phi
if kw.has_key ("theta") and kw ["theta"] == None :
kw ["theta"] = _orient3_theta
if not kw.has_key ("phi") and not kw.has_key ("theta") :
phi = _orient3_phi
theta = _orient3_theta
elif not kw.has_key ("phi") or not kw.has_key ("theta") :
gr3 = array (getrot3_ (), copy = 1)
z = dot (transpose (gr3), array ( [0., 0., 1.]))
if abs (z [0]) > 1.e-6 :
# object z-axis not aligned with viewer y-axis
if not kw.has_key ("theta") :
theta = _orient3_theta
phi = kw ["phi"]
else :
phi = _orient3_phi
theta = kw ["theta"]
elif not kw.has_key ("theta") :
phi = kw ["phi"]
if (abs (z [1]) < 1.e-6) :
theta = _orient3_theta
else :
theta = arctan2 (z [2], z [1])
else :
theta = kw ["theta"]
y = array ( [0., z [2], -z [1]])
x = dot (transpose (gr3), array ( [1., 0., 0.]))
phi = arctan2 (sum (y * x,axis=0), x [0])
else :
phi = kw ["phi"]
theta = kw ["theta"]
x = array ( [1., 0., 0.], Float)
y = array ( [0., 1., 0.], Float)
z = array ( [0., 0., 1.], Float)
[y, z] = rot3_ (theta, y, z)
[z, x] = rot3_ (phi, z, x)
setrot3_ (array ( [x, -z, y], Float))
import copy
def save3 ( ) :
"""
view = save3 ( )
Save the current 3D viewing transformation and lighting.
Actually, this doesn't save anything; it returns a copy
of the current 3D viewing transformation and lighting, so
that the user can put it aside somewhere.
SEE ALSO: restore3, rot3, mov3, aim3, light3
"""
return _draw3_list [0:_draw3_n]
def restore3 ( view = None ) :
"""
restore3 ( view )
Restore a previously saved 3D viewing transformation and lighting.
If view is missing, rotate object to viewer's coordinate system.
SEE ALSO: restore3, rot3, mov3, aim3, light3
"""
global _draw3_list, _draw3_view, _light3_list, _draw3_n
if view != None :
view = view [0:len (view)] # Copies view
else :
view = _draw3_view + _light3_list
old = _draw3_list [0:_draw3_n]
_draw3_list = view [0:_draw3_n] + _draw3_list [_draw3_n:]
undo3_set_ (restore3, old)
_AmbientError = "AmbientError"
_DiffuseError = "DiffuseError"
_LightingError = "LightingError"
def light3 ( * kw, ** kwds ) :
"""
light3 (ambient=a_level,
diffuse=d_level,
specular=s_level,
spower=n,
sdir=xyz)
Sets lighting properties for 3D shading effects.
A surface will be shaded according to its to its orientation
relative to the viewing direction.
The ambient level A_LEVEL is a light level (arbitrary units)
that is added to every surface independent of its orientation.
The diffuse level D_LEVEL is a light level which is proportional
to cos(theta), where theta is the angle between the surface
normal and the viewing direction, so that surfaces directly
facing the viewer are bright, while surfaces viewed edge on are
unlit (and surfaces facing away, if drawn, are shaded as if they
faced the viewer).
The specular level S_LEVEL is a light level proportional to a high
power spower=N of 1+cos(alpha), where alpha is the angle between
the specular reflection angle and the viewing direction. The light
source for the calculation of alpha lies in the direction XYZ (a
3 element vector) in the viewer's coordinate system at infinite
distance. You can have ns light sources by making S_LEVEL, N, and
XYZ (or any combination) be vectors of length ns (3-by-ns in the
case of XYZ). (See source code for specular_hook function
definition if powers of 1+cos(alpha) aren't good enough for you.)
With no arguments, return to the default lighting.
EXAMPLES:
light3 ( diffuse=.1, specular=1., sdir=[0,0,-1])
(dramatic "tail lighting" effect)
light3 ( diffuse=.5, specular=1., sdir=[1,.5,1])
(classic "over your right shoulder" lighting)
light3 ( ambient=.1,diffuse=.1,specular=1.,
sdir=[[0,0,-1],[1,.5,1]],spower=[4,2])
(two light sources combining previous effects)
SEE ALSO: rot3, save3, restore3
"""
global _draw3_list, _draw3_nv
if len (kw) > 0 : kwds = kw [0]
old = _draw3_list [_draw3_nv:] [0:5]
flags = 0
if kwds.has_key ("ambient") and kwds ["ambient"] != None :
ambient = kwds ["ambient"]
if not is_scalar (ambient) :
raise _AmbientError, "ambient light level must be scalar."
flags = flags | 1
_draw3_list [_draw3_nv] = ambient
if kwds.has_key ("diffuse") and kwds ["diffuse"] != None :
diffuse = kwds ["diffuse"]
if not is_scalar (diffuse) :
raise _DiffuseError, "diffuse light level must be scalar."
flags = flags | 2
_draw3_list [_draw3_nv + 1 ] = diffuse
if kwds.has_key ("specular") and kwds ["specular"] != None :
specular = kwds ["specular"]
flags = flags | 4
else :
specular = _draw3_list [_draw3_nv + 2]
if kwds.has_key ("spower") and kwds ["spower"] != None :
spower = kwds ["spower"]
flags = flags | 8
else :
spower = _draw3_list [_draw3_nv + 3]
if kwds.has_key ("sdir") and kwds ["sdir"] != None :
sdir = kwds ["sdir"]
dims = shape (sdir)
if dims == 0 or len (dims) == 2 and dims [1] != 3 :
raise _LightingError, \
"lighting direction must be 3 vector or ns-by-3 array."
flags = flags | 16
else :
sdir = _draw3_list [_draw3_nv + 4]
if flags & 28 :
if flags & 4 : _draw3_list [_draw3_nv + 2] = specular
if flags & 8 : _draw3_list [_draw3_nv + 3] = spower
if flags & 16 : _draw3_list [_draw3_nv + 4] = sdir
if not flags :
_draw3_list [_draw3_nv: _draw3_nv + 5] = _light3_list [0:5]
undo3_set_ (light3_, old)
def light3_ (arg) :
global _draw3_list, _draw3_nv
_draw3_list [_draw3_nv:_draw3_nv + 5] = arg [0:5]
def get3_light (xyz, * nxyz) :
"""
get3_light(xyz, nxyz)
or get3_light(xyz)
return 3D lighting for polygons with vertices XYZ. If NXYZ is
specified, XYZ should be sum(nxyz,axis=0)-by-3, with NXYZ being the
list of numbers of vertices for each polygon (as for the plfp
function). If NXYZ is not specified, XYZ should be a quadrilateral
mesh, ni-by-nj-by-3 (as for the plf function). In the first case,
the return value is len (NXYZ) long; in the second case, the
return value is (ni-1)-by-(nj-1).
The parameters of the lighting calculation are set by the
light3 function.
SEE ALSO: light3, set3_object, get3_normal, get3_centroid
"""
global _draw3_list, _draw3_nv
list = _draw3_list [_draw3_nv:]
ambient = list [0]
diffuse = list [1]
specular = list [2]
spower = list [3]
sdir = list [4]
if len (nxyz) == 0 :
normal = get3_normal (xyz)
else :
normal = get3_normal (xyz, nxyz [0])
zc = getzc3_ ( )
if ( not zc ) :
view = array ( [0., 0., 1.], Float)
elif len (nxyz) == 0 :
view = array ( [0., 0., zc], Float) - get3_centroid (xyz)
else :
view = array ( [0., 0., zc], Float) - get3_centroid (xyz, nxyz [0])
m1 = \
sqrt ( sum (view * view,axis=0))
if m1 == 0. : m1 = 1.
view = view / m1
nv = normal [0, ...] * view [0] + normal [1, ...] * view [1] + \
normal [2, ...] * view [2]
light = ambient + diffuse * abs (nv)
if specular != 0. :
sv = transpose (transpose (sdir) / sqrt (sum (transpose (sdir*sdir),axis=0)))
sv = dot (sv, view)
if len (shape (sdir)) == 1 :
sn = sum(array([sdir[0]*normal[0],sdir[1]*normal[1],
sdir[2]*normal[2]]),axis=0)
####### I left out the specular_hook stuff.
m1 = maximum (sn * nv -0.5 * sv + 0.5, 1.e-30)
m1 = m1 ** spower
light = light + (specular * m1)
elif len (shape (sdir)) >= 2 :
# multiple light sources
nsrc = len (shape (sdir))
for i in range (nsrc) :
sn = sum(array([sdir[i,0]*normal[0],sdir[i,1]*normal[1],
sdir[i,2]*normal[2]]),axis=0)
m1 = maximum (sn * nv -0.5 * sv [i] + 0.5, 1.e-30) ** spower [i]
light = light + specular * m1
return light
def get3_normal (xyz, *nxyz) :
"""
get3_normal(xyz, nxyz)
or get3_normal(xyz)
return 3D normals for polygons with vertices XYZ. If NXYZ is
specified, XYZ should be sum(nxyz,axis=0)-by-3, with NXYZ being the
list of numbers of vertices for each polygon (as for the plfp
function). If NXYZ is not specified, XYZ should be a quadrilateral
mesh, ni-by-nj-by-3 (as for the plf function). In the first case,
the return value is len(NXYZ)-by-3; in the second case, the
return value is (ni-1)-by-(nj-1)-by-3.
The normals are constructed from the cross product of the lines
joining the midpoints of two edges which as nearly quarter the
polygon as possible (the medians for a quadrilateral). No check
is made that these not be parallel; the returned "normal" is
[0,0,0] in that case. Also, if the polygon vertices are not
coplanar, the "normal" has no precisely definable meaning.
SEE ALSO: get3_centroid, get3_light
"""
if len (nxyz) == 0 :
# if no polygon list is given, assume xyz is 2D mesh
# form normal as cross product of medians
m1 = dif_ (zcen_ (xyz, 1), 2)
m2 = zcen_ (dif_ (xyz, 1), 2)
else :
# with polygon list, more elaborate calculation required
# (1) frst subscripts the first vertex of each polygon
frst = cumsum (nxyz [0],axis=0) - nxyz [0]
# form normal by getting two approximate diameters
# (reduces to above medians for quads)
# (2) compute midpoints of first three sides
n2 = (nxyz [0] + 1) / 2
c0 = (take(xyz, frst, 0) + take(xyz, frst + 1, 0)) / 2.
i = frst + n2 - 1
c1 = (take(xyz, i, 0) + take(xyz, i + 1, 0)) / 2.
i = n2 / 2
c2 = (take(xyz, frst + i, 0) + take(xyz, frst + (i + 1) % nxyz [0], 0)) / 2.
i = minimum (i + n2, nxyz [0]) - 1
c3 = (take(xyz, frst + i, 0) + take(xyz, frst + (i + 1) % nxyz [0], 0)) / 2.
m1 = c1 - c0
m2 = c3 - c2
# poly normal is cross product of two medians (or diameters)
# normal = m1; I had to reverse the sign.
if len (shape (xyz)) == 3 :
n1 = m1 [2, :] * m2 [1, :] - \
m1 [1, :] * m2 [2, :]
n2 = m1 [0, :] * m2 [2, :] - \
m1 [2, :] * m2 [0, :]
n3 = m1 [1, :] * m2 [0, :] - \
m1 [0, :] * m2 [1, :]
else :
n1 = m1 [:, 2] * m2 [:, 1] - \
m1 [:, 1] * m2 [:, 2]
n2 = m1 [:, 0] * m2 [:, 2] - \
m1 [:, 2] * m2 [:, 0]
n3 = m1 [:, 1] * m2 [:, 0] - \
m1 [:, 0] * m2 [:, 1]
m1 = sqrt (n1 ** 2 + n2 **2 + n3 **2)
m1 = m1 + equal (m1, 0.0)
normal = array([n1 / m1, n2 / m1, n3 / m1])
return normal
def get3_centroid (xyz, * nxyz) :
"""
get3_centroid(xyz, *nxyz)
or get3_centroid(xyz)
return 3D centroids for polygons with vertices XYZ. If NXYZ is
specified, XYZ should be sum(nxyz,axis=0)-by-3, with NXYZ being the
list of numbers of vertices for each polygon (as for the plfp
function). If NXYZ is not specified, XYZ should be a quadrilateral
mesh, ni-by-nj-by-3 (as for the plf function). In the first case,
the return value is len(NXYZ) in length; in the second case, the
return value is (ni-1)-by-(nj-1)-by-3.
The centroids are constructed as the mean value of all vertices
of each polygon.
SEE ALSO: get3_normal, get3_light
"""
if len (nxyz) == 0 :
# if no polygon list is given, assume xyz is 2D mesh
centroid = zcen_ (zcen_ (xyz, 1), 0)
else :
# with polygon list, more elaborate calculation required
last = cumsum (nxyz [0],axis=0)
list = histogram (1 + last) [0:-1]
list = cumsum (list,axis=0)
k = len (nxyz [0])
l = shape (xyz) [0]
centroid = zeros ( (k, 3))
centroid [0:k, 0] = histogram (list, xyz [0:l,0])
centroid [0:k, 1] = histogram (list, xyz [0:l,1])
centroid [0:k, 2] = histogram (list, xyz [0:l,2])
fnxyz = array (nxyz [0], Float )
centroid = centroid / fnxyz
return centroid
_Get3Error = "Get3Error"
def get3_xy (xyz, *flg) :
"""
get3_xy (xyz)
or get3_xy(xyz, 1)
Given anything-by-3 coordinates XYZ, return X and Y in viewer's
coordinate system (set by rot3, mov3, orient3, etc.). If the
second argument is present and non-zero, also return Z (for use
in sort3d or get3_light, for example). If the camera position
has been set to a finite distance with setz3, the returned
coordinates will be tangents of angles for a perspective
drawing (and Z will be scaled by 1/zc).
Unlike the Yorick version, this function returns a 3-by-anything
array of coordinates.
Actually, what it returns is a 3-by-anything python array, whose
0th element is the x array, whose 1th element is the y array, and
whose 2th element is the z array if asked for.
I believe that x, y, and z can be either 1d or 2d, so this
routine is written in two cases.
"""
# rotate and translate to viewer's coordinate system
shp = shape (xyz)
if len (shp) == 3:
# 2d mesh case is much more complex than in Yorick
(k, l) = shp [1:3]
go3_ = getorg3_ ()
# Unwind xyz
xx = ravel (xyz [0])
yy = ravel (xyz [1])
zz = ravel (xyz [2])
tmpxyz = array ( [xx, yy, zz])
gr3 = array (getrot3_ (), copy = 1)
tmpxyz = dot (transpose (gr3),
tmpxyz - array ( [ [go3_ [0]], [go3_ [1]], [go3_ [2]]]))
## xx = transpose (reshape (ravel (tmpxyz [0]), (k,l)))
## yy = transpose (reshape (ravel (tmpxyz [1]), (k,l)))
## zz = transpose (reshape (ravel (tmpxyz [2]), (k,l)))
xx = (reshape (ravel (tmpxyz [0]), (k,l)))
yy = (reshape (ravel (tmpxyz [1]), (k,l)))
zz = (reshape (ravel (tmpxyz [2]), (k,l)))
tmpxyz = array ( [xx, yy, zz])
elif len (shp) == 2:
go3_ = getorg3_ ()
lm = array (getrot3_ (), copy = 1)
rm = (xyz - array ( [ go3_ [0], go3_ [1], go3_ [2]]))
tmpxyz = dot (rm, lm)
else:
raise _Get3Error, "xyz has a bad shape: " + `shp`
# do optional perspective projection
zc = getzc3_ ()
if zc != None :
if len (shp) == 2 :
z = tmpxyz [:, 2]
zc = maximum (zc - z, 1.e-35) # protect behind camera, avoid zero divide
tmpxyz [:, 0] = tmpxyz [:, 0] / zc
tmpxyz [:, 1] = tmpxyz [:, 1] / zc
if len (flg) != 0 and flg [0] != 0 :
tmpxyz [:, 2] = tmpxyz [:, 2] / zc
elif len (shp) == 3 :
z = tmpxyz [:,:, 2]
zc = maximum (zc - z, 1.e-35) # protect behind camera, avoid zero divide
tmpxyz [:,:, 0] = tmpxyz [:,:, 0] / zc
tmpxyz [:,:, 1] = tmpxyz [:,:, 1] / zc
if len (flg) != 0 and flg [0] != 0 :
tmpxyz [:,:, 2] = tmpxyz [:,:, 2] / zc
return tmpxyz
_UndoError = "UndoError"
_in_undo3 = 0
_undo3_list = []
def undo3 (n = 1) :
"""
undo3 ()
or undo3 (n)
Undo the effects of the last N (default 1) rot3, orient3, mov3, aim3,
setz3, or light3 commands.
"""
global _in_undo3, _undo3_list
n = 2 * n
if n < 0 or n > len (_undo3_list) :
raise _UndoError, "not that many items in undo list"
_in_undo3 = 1 # flag to skip undo3_set_
# perhaps should save discarded items in a redo list?
use_list = undo3_list [-n:]
undo3_list = undo3_list [:-n]
while n > 0 :
fnc = use_list_ [0]
del use_list_ [0]
arg = use_list_ [0]
del use_list_ [0]
fnc (arg)
n = n - 2
_in_undo3 = 0
draw3_trigger ( )
def set3_object (fnc, arg) :
"""
set3_object (drawing_function, [arg1,arg2,...])
set up to trigger a call to draw3, adding a call to the
3D display list of the form:
DRAWING_FUNCTION ( [ARG1, ARG2, ...]))
When draw3 calls DRAWING_FUNCTION, the external variable draw3_
will be non-zero, so DRAWING_FUNCTION can be written like this:
def drawing_function(arg) :
if (draw3_) :
arg1= arg [0]
arg1= arg [1]
...
...<calls to get3_xy, sort3d, get3_light, etc.>...
...<calls to graphics functions plfp, plf, etc.>...
return
...<verify args>...
...<do orientation and lighting independent calcs>...
set3_object (drawing_function, [arg1,arg2,...])
SEE ALSO: get3_xy, get3_light, sort3d
"""
global _draw3_list
_draw3_list = _draw3_list + [fnc, arg]
draw3_trigger ()
def setorg3_ ( x ) :
# ZCM 2/21/97 change reflects the fact that I hadn't realized
# that car and cdr, as functions, return the item replaced.
global _draw3_list
oldx = _draw3_list [1]
_draw3_list [1] = x
undo3_set_ ( setorg3_, oldx)
def setzc3_ (x) :
# ZCM 2/21/97 change reflects the fact that I hadn't realized
# that car and cdr, as functions, return the item replaced.
global _draw3_list
oldx = _draw3_list [2]
_draw3_list [2] = x
undo3_set_ ( setzc3_, oldx)
def getrot3_ () :
return _draw3_list [0]
def getorg3_ () :
return _draw3_list [1]
def getzc3_ () :
return _draw3_list [2]
def undo3_set_ (fnc, arg) :
global _undo3_list, _in_undo3, _undo3_limit
# arg = copy.deepcopy (arg)
if not _in_undo3 :
if len (_undo3_list) >= 2 * _undo3_limit :
_undo3_list = _undo3_list [0:2 * _undo3_limit - 2]
_undo3_list = [fnc, arg] + _undo3_list
draw3_trigger ( )
_in_undo3 = 0 # ??????????????
_in_undo3 = 100
def do_nothing ( ) :
pass
return
def clear_idler ( ) :
_idler = do_nothing ( )
def set_idler ( fnc ) :
global _idler
_idler = fnc
def call_idler ( ) :
global _idler
_idler ( )
def _draw3_idler ( ) :
# I have added orientation and limits to this because they may not
# have been set by a previous command. If the user doesn't like this,
# he/she can write his/her own idler. (ZCM 7/1/97)
global _default_gnomon
orient3 ()
if current_window () == -1 :
window3 (0)
else :
window3 (current_window ())
gnomon (_default_gnomon)
lims = draw3 (1)
if lims == None :
return
else :
limits (lims [0], lims [1], lims [2], lims [3])
def set_default_idler ( ) :
set_idler (_draw3_idler)
set_default_idler ( )
_draw3_changes = None
def set_multiple_components ( n = 0 ) :
global _multiple_components
_multiple_components = n
set_multiple_components (0)
def has_multiple_components () :
global _multiple_components
return _multiple_components
def draw3_trigger ( ) :
"arrange to call draw3 when everything else is finished"
global _draw3_changes
global _draw3_idler
set_idler ( _draw3_idler )
_draw3_changes = 1
def clear3 ( ) :
"clear3 ( ) : Clear the current 3D display list."
global _draw3_list, _draw3_n
_draw3_list [_draw3_n:] = []
set_multiple_components (0)
def window3 ( * n , **kw ) :
"""
window3 ( ) or window3 (n)
initialize style="nobox.gs" window for 3D graphics
"""
if kw.has_key ("dump") :
dump = kw ["dump"]
else :
dump = 0
if kw.has_key ("hcp") :
if len (n) == 0 :
window (wait=1, style="nobox.gs", legends=0, hcp=kw ["hcp"],
dump = dump)
hcpon ()
else :
window (n [0], wait=1, style="nobox.gs", legends=0, hcp=kw ["hcp"],
dump = dump)
hcpon ()
else :
if len (n) == 0 :
window (wait=1, style="nobox.gs", legends=0)
else :
window (n [0], wait=1, style="nobox.gs", legends=0)
def sort3d (z, npolys) :
"""
sort3d(z, npolys)
given Z and NPOLYS, with len(Z)==sum(npolys,axis=0), return
a 2-element list [LIST, VLIST] such that Z[VLIST] and NPOLYS[LIST] are
sorted from smallest average Z to largest average Z, where
the averages are taken over the clusters of length NPOLYS.
Within each cluster (polygon), the cyclic order of Z[VLIST]
remains unchanged, but the absolute order may change.
This sorting order produces correct or nearly correct order
for a plfp command to make a plot involving hidden or partially
hidden surfaces in three dimensions. It works best when the
polys form a set of disjoint closed, convex surfaces, and when
the surface normal changes only very little between neighboring
polys. (If the latter condition holds, then even if sort3d
mis-orders two neighboring polys, their colors will be very
nearly the same, and the mistake won't be noticeable.) A truly
correct 3D sorting routine is impossible, since there may be no
rendering order which produces correct surface hiding (some polys
may need to be split into pieces in order to do that). There
are more nearly correct algorithms than this, but they are much
slower.
SEE ALSO: get3_xy
"""
# first compute z, the z-centroid of every poly
# get a list the same length as x, y, or z which is 1 for each
# vertex of poly 1, 2 for each vertex of poly2, etc.
# the goal is to make nlist with histogram(nlist)==npolys
nlist = histogram(cumsum (npolys,axis=0)) [0:-1]
nlist = cumsum (nlist,axis=0)
# now sum the vertex values and divide by the number of vertices
z = histogram (nlist, z) / npolys
# sort the polygons from smallest z to largest z
list = index_sort (z)
# next, find the list which sorts the polygon vertices
# first, find a list vlist such that sort(vlist) is above list
vlist = zeros (len (list), Int)
array_set (vlist, list, arange (len (list), dtype = Int))
# then reset the nlist values to that pre-sorted order, so that
# sort(nlist) will be the required vertex sorting list
nlist = take(vlist, nlist, 0)
# the final hitch is to ensure that the vertices within each polygon
# remain in their initial order (sort scrambles equal values)
# since the vertices of a polygon can be cyclically permuted,
# it suffices to add a sawtooth function to a scaled nlist to
# produce a list in which each cluster of equal values will retain
# the same cyclic order after the sort
# (note that the more complicated msort routine would leave the
# clusters without even a cyclic permutation, if that were
# necessary)
n1max = max (npolys) # this must never be so large that
# numberof(npolys)*nmax > 2e9
nmax = n1max * ones (len (nlist), Int)
vlist = index_sort (nmax * nlist +
arange (len (nlist), dtype = Int) % n1max)
# primary sort key ^ secondary key ^
return [list, vlist]
_square = 1 # Global variable which tells whether to force equal axes
_xfactor = 1.
_yfactor = 1. # These globals enable one to scale one or both axes up or down
def get_factors_ ( ) :
return [_xfactor, _yfactor]
def get_square_ ( ) :
global _square
return _square
def limits_ (square = 0, yfactor = 1., xfactor = 1.) :
global _square, _xfactor, _yfactor
_square = square
_xfactor = xfactor
_yfactor = yfactor
def draw3 (called_as_idler = 0, lims = None) :
"""
draw3 (called_as_idler = 0, lims = None):
Draw the current 3d display list.
Ordinarily triggered automatically when the drawing changes.
"""
global _draw3, _draw3_changes, _draw3_list, _draw3_n, _gnomon
if _draw3_changes :
if called_as_idler :
fma ( )
# the first _draw3_n elements of _draw3_list are the viewing
# transforms, lighting, etc.
# thereafter, elements are (function, argument-list) pairs
# the _draw3 flag alerts the functions that these are the draw
# calls rather than the interactive setup calls
set_draw3_ (1)
list = _draw3_list [_draw3_n:]
no_lims = lims == None
first = 1
# ZCM Feb. 1997: Because Gist command 'limits' seems to
# misbehave and be timing dependent, I have added the kludge
# below, which seems to make things work.
while list != [] :
fnc = list [0]
if no_lims :
if (first) :
lims = fnc (list [1])
first = 0
else :
fv = fnc (list [1])
if fv != None and lims != None :
lims = [min (fv [0], lims [0]),
max (fv [1], lims [1]),
min (fv [2], lims [2]),
max (fv [3], lims [3])]
elif fv != None :
lims = fv
else :
fnc (list [1])
list = list [2:]
if _gnomon :
_gnomon_draw ( )
_draw3_changes = None
set_draw3_ (0)
return lims
# _draw3 = 0
try :
dummy = _draw3_view
except :
_draw3_view = [array ([[1, 0, 0], [0, 1, 0], [0, 0, 1]]), [0., 0., 0.], None]
_draw3_nv = len (_draw3_view)
try :
dummy = _draw3
except :
set_draw3_ (0)
def get_draw3_ ( ) :
global _draw3
return _draw3
try :
dummy = _light3_ambient
except :
_light3_ambient = 0.2
try :
dummy = _light3_diffuse
except :
_light3_diffuse = 1.0
try :
dummy = _light3_specular
except :
_light3_specular = 0.0
try :
dummy = _light3_spower
except :
_light3_spower = 2
try :
dummy = _light3_sdir
except :
_light3_sdir = array ( [1.0, 0.5, 1.0]) / sqrt(2.25)
_light3_list = [_light3_ambient, _light3_diffuse, _light3_specular,
_light3_spower, _light3_sdir]
_draw3_list = _draw3_view + _light3_list
_draw3_n = len (_draw3_list)
def get_draw3_list_ ( ) :
global _draw3_list
return _draw3_list
def get_draw3_n_ ( ) :
global _draw3_n
return _draw3_n
try :
dummy = _gnomon
except :
_gnomon = 0
def set_default_gnomon ( * n ) :
# The default gnomon value is used when _draw3 is nonzero, i. e.,
# when a plot is actually done after every plot call.
global _default_gnomon
if len (n) > 0 :
_default_gnomon = n
else :
_default_gnomon = 0
set_default_gnomon (0)
def gnomon (* on, ** kw) :
"""
gnomon ()
or gnomon (onoff)
Toggle the gnomon display. If on is present and non-zero,
turn on the gnomon. If zero, turn it off.
The gnomon shows the X, Y, and Z axis directions in the
object coordinate system. The directions are labeled.
The gnomon is always infinitely far behind the object
(away from the camera).
There is a mirror-through-the-screen-plane ambiguity in the
display which is resolved in two ways: (1) the (X, Y, Z)
coordinate system is right-handed, and (2) If the tip of an
axis projects into the screen, its label is drawn in opposite
polarity to the other text in the screen.
"""
# (ZCM 4/4/97) Add keyword argument chr to allow specification
# of the axis labels.
global _gnomon, chr
old = _gnomon
if len (on) == 0 :
_gnomon = 1 - _gnomon
elif (on [0]) :
_gnomon = 1
else :
_gnomon = 0
if old != _gnomon :
draw3_trigger ()
if kw.has_key ("chr") :
chr = kw ["chr"]
else :
chr = ["X", "Y", "Z"]
def _gnomon_draw ( ) :
global chr
o = array ( [0., 0., 0.], Float)
x1 = array ( [1., 0., 0.], Float)
y1 = array ( [0., 1., 0.], Float)
z1 = array ( [0., 0., 1.], Float)
xyz1 = array (getrot3_ ( ), copy = 1)
xyz2 = array([[o,x1],[o,y1],[o,z1]])
s1 = shape ( xyz1 )
s2 = shape ( xyz2 )
xyz = zeros ( (s2 [1], s2 [0], s1 [1] ), Float)
xyz [0, :, :] = dot (transpose (xyz1), xyz2 [:, 0, :])
xyz [1, :, :] = dot (transpose (xyz1), xyz2 [:, 1, :])
xyz = .0013 * _gnomon_scale * xyz
x1 = xyz [0:2, 0, 0:3]
y1 = xyz [0:2, 1, 0:3]
z1 = xyz [1, 2, 0:3]
x0 = x1 [0]
x1 = x1 [1]
y0 = y1 [0]
y1 = y1 [1]
wid = min (_gnomon_scale / 18., 6.)
if ( wid < 0.5 ) : wid = 0.
plsys (0)
pldj (x0 + _gnomon_x, y0 + _gnomon_y, x1 + _gnomon_x, y1 + _gnomon_y,
width = wid, type = 1, legend = "")
plsys (1)
# Compute point size of labels (1/3 of axis length)
pts = [8, 10, 12, 14, 18, 24] [digitize (_gnomon_scale / 3.0,
array ([9, 11, 13, 16, 21], Int))]
if _gnomon_scale < 21.0 :
x1 = x1 * 21. / _gnomon_scale
y1 = y1 * 21. / _gnomon_scale
# label positions: first find shortest axis
xy = sqrt (x1 * x1 + y1 * y1)
xysum = add.reduce (xy)
i = argmin (xy,axis=-1) # mnx (xy)
jk = [ [1, 2], [2, 0], [0, 1]] [i]
j = jk [0]
k = jk [1]
if xy [i] < 1.e-7 * xysum : # guarantee not exactly zero
x1 [i] = -1.e-6 * (x1 [j] + x1 [k] )
y1 [i] = -1.e-6 * (y1 [j] + y1 [k] )
xy [i] = sqrt (x1 [i] * x1 [i] + y1 [i] * y1 [i])
xyi = xy [i]
# next find axis nearest to shortest
if abs (x1 [j] * y1 [i] - y1 [j] * x1 [i]) * xy [k] > \
abs (x1 [k] * y1 [i] - y1 [k] * x1 [i]) * xy [j] :
jk = j
j = k
k = jk
# furthest axis first--move perpendicular to nearest axis
xk = - y1 [j]
yk = x1 [j]
xy = sqrt (xk * xk + yk * yk)
xk = xk / xy
yk = yk / xy
if (xk * x1 [k] + yk * y1 [k] < 0.0 ) :
xk = - xk
yk = - yk
# nearer axis next--move perpendicular to furthest axis
xj = - y1 [k]
yj = x1 [k]
xy = sqrt (xj * xj + yj * yj)
xj = xj / xy
yj = yj / xy
if (xj * x1[j] + yj * y1 [j] < 0.0 ) :
xj = - xj
yj = - yj
# shortest axis last -- move perpendicular to nearer
xi = - y1 [j]
yi = x1 [j]
xy = sqrt (xi * xi + yi * yi)
xi = xi / xy
yi = yi / xy
if (xi *x1 [i] + yi * y1 [i] < 0.0) :
xi = - xi
yi = - yi
# shortest axis label may need adjustment
d = 0.0013 * pts
if xyi < d :
# just center it in correct quadrant
jk = sign_ (xi * xj + yi * yj)
yi = sign_ (xi * xk + yi * yk)
xi = jk * xj + yi * xk
yi = jk * yj + yi * yk
jk = sqrt (xi * xi + yi * yi)
xi = xi / jk
yi = yi / jk
x = zeros (3, Float)
y = zeros (3, Float)
x [i] = xi
x [j] = xj
x [k] = xk
y [i] = yi
y [j] = yj
y [k] = yk
x = x * d
y = y * d
x = x + x1 + _gnomon_x
y = y + y1 + _gnomon_y
try :
dum = chr
except :
chr = ["X", "Y", "Z"]
gnomon_text_ (chr [i], x [i], y [i], pts, z1 [i] < 1.e-6)
gnomon_text_ (chr [j], x [j], y [j], pts, z1 [j] < 1.e-6)
gnomon_text_ (chr [k], x [k], y [k], pts, z1 [k] < 1.e-6)
try :
dummy = _gnomon_scale
except :
_gnomon_scale = 30. # axes lengths in points
try :
dummy = _gnomon_x
except :
_gnomon_x = 0.18 # gnomon origin in system 0 coordinates
try :
dummy = _gnomon_y
except :
_gnomon_y = 0.42
def gnomon_text_ (chr, x, y, pts, invert) :
# pts = 8, 10, 12, 14, 18, or 24
col = "fg"
if invert :
plsys (0)
plg (array ( [y, y]), array ( [x, x]), type = 1, width = 2.2 * pts,
color = col, marks = 0, legend = "")
plsys (1)
col = "bg"
plt (chr, x, y, justify = "CH", color = col, height = pts,
font = "helvetica", opaque = 0)
from movie import *
g_nframes = 30
def spin3 (nframes = 30, axis = array ([-1, 1, 0], Float), tlimit = 60.,
dtmin = 0.0, bracket_time = array ([2., 2.], Float), lims = None,
timing = 0, angle = 2. * pi) :
"""
spin3 ( ) or spin3 (nframes) os spin3 (nframes, axis)
Spin the current 3D display list about AXIS over NFRAMES. Keywords
tlimit= the total time allowed for the movie in seconds (default 60),
dtmin= the minimum allowed interframe time in seconds (default 0.0),
bracket_time= (as for movie function in movie.i), timing = 1 if
you want timing measured and printed out, 0 if not.
The default AXIS is [-1,1,0] and the default NFRAMES is 30.
SEE ALSO: rot3
"""
# Note on global variables (ZCM 2/21/97):
# I see no better way of sharing these between spin3 and _spin3
# than making them global. Otherwise one would have to pass
# them to movie, which would then send them as arguments to
# _spin3. But because movie may call other routines, every one
# of them would have to have these values, necessary or not.
# So I have started their names with underscores; at least
# this makes them inaccessible outside this module.
global _phi, _theta, _dtheta
global _g_nframes
_g_nframes = nframes
_dtheta = angle / (nframes - 1)
_theta = arccos (axis [2] / sqrt (axis [0] * axis [0] + axis [1] * axis [1] +
axis [2] * axis [2]))
inc = axis [0] == axis [1] == 0
_phi = arctan2 (axis [1], axis [0] + inc)
orig = save3 ( )
movie (_spin3, tlimit, dtmin, bracket_time, lims, timing = 0)
restore3 (orig)
def _spin3 (i) :
global _g_nframes
global _phi, _theta, _dtheta
if i >= _g_nframes:
return 0
rot3 (za = -_phi)
rot3 (ya = -_theta, za = _dtheta)
rot3 (ya = _theta, za = _phi)
lims = draw3 ( )
limits (lims [0], lims [1], lims [2], lims [3])
return 1
|