1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
|
## Automatically adapted for scipy Oct 31, 2005 by
# $Id: slice3.py 2183 2006-08-29 10:30:44Z oliphant $
# Copyright (c) 1996, 1997, The Regents of the University of California.
# All rights reserved. See Legal.htm for full text and disclaimer.
# SLICE3.PY
# find 2D slices of a 3D hexahedral mesh
# $Id: slice3.py 2183 2006-08-29 10:30:44Z oliphant $
#
# Change (ZCM 12/4/96) Apparently _draw3_list, which is global in
# pl3d.py, can be fetched from there, but once this has been done,
# assignments to it over there are not reflected in the copy here.
# This has been fixed by creating an access function.
from scipy import *
from shapetest import *
from types import *
from pl3d import *
from numpy import *
from gistC import *
from gistfuncs import *
from numpy.oldnumeric import nonzero
#
# Caveats:
# (A) Performance is reasonably good, but may still be a factor of
# several slower than what could be achieved in compiled code.
# (B) Only a simple in-memory mesh model is implemented here.
# However, hooks are supplied for more interesting possibilities,
# such as a large binary file resident mesh data base.
# (C) There is a conceptual difficulty with _walk3 for the case
# of a quad face all four of whose edges are cut by the slicing
# plane. This can only happen when two opposite corners are
# above and the other two below the slicing plane. There are
# three possible ways to connect the four intersection points in
# two pairs: (1) // (2) \\ and (3) X There is a severe problem
# with (1) and (2) in that a consistent decision must be made
# when connecting the points on the two cells which share the
# face - that is, each face must carry information on which way
# it is triangulated. For a regular 3D mesh, it is relatively
# easy to come up with a consistent scheme for triangulating faces,
# but for a general unstructured mesh, each face itself must carry
# this information. This presents a huge challenge for data flow,
# which I don't believe is worthwhile. Because the X choice is
# unique, and I don't see why we shouldn't use it here.
# For contouring routines, we reject the X choice on esthetic
# grounds, and perhaps that will prove to be the case here as
# well - but I believe we should try the simple way out first.
# In this case, we are going to be filling these polygons with
# a color representing a function value in the cell. Since the
# adjacent cells should have nearly the same values, the X-traced
# polygons will have nearly the same color, and I doubt there will
# be an esthetic problem. Anyway, the slice3 implemented
# below produces the unique X (bowtied) polygons, rather than
# attempting to choose between // or \\ (non-bowtied) alternatives.
# Besides, in the case of contours, the trivial alternating
# triangulation scheme is just as bad esthetically as every
# zone triangulated the same way!
def plane3 (normal, point) :
"""
plane3(normal, point)
or plane3([nx,ny,nz], [px,py,pz])
returns [nx,ny,nz,pp] for the specified plane.
"""
# the normal doesn't really need to be normalized, but this
# has the desirable side effect of blowing up if normal==0
newnorm = zeros (4, Float)
newnorm [0:3] = normal / sqrt (sum (normal*normal,axis=0))
newnorm [3] = sum (multiply (normal, point),axis=0)
return newnorm
_Mesh3Error = "Mesh3Error"
def mesh3 (x, y = None, z = None, ** kw) :
"""
mesh3(x,y,z)
or mesh3(x,y,z, funcs = [f1,f2,...])
or mesh3(xyz, funcs = [f1,f2,...])
or mesh3(nxnynz, dxdydz, x0y0z0, funcs = [f1,f2,...])
make mesh3 argument for slice3, xyz3, getv3, etc., functions.
X, Y, and Z are each 3D coordinate arrays. The optional F1, F2,
etc. are 3D arrays of function values (e.g. density, temperature)
which have one less value along each dimension than the coordinate
arrays. The "index" of each zone in the returned mesh3 is
the index in these cell-centered Fi arrays, so every index from
one through the total number of cells indicates one real cell.
The Fi arrays can also have the same dimensions as X, Y, or Z
in order to represent point-centered quantities.
If X has four dimensions and the length of the first is 3, then
it is interpreted as XYZ (which is the quantity actually stored
in the returned cell list).
If X is a vector of 3 integers, it is interpreted as [nx,ny,nz]
of a uniform 3D mesh, and the second and third arguments are
[dx,dy,dz] and [x0,y0,z0] respectively. (DXDYDZ represent the
size of the entire mesh, not the size of one cell, and NXNYNZ are
the number of cells, not the number of points.)
Added by ZCM 1/13/97: if x, y, and z are one-dimensional of
the same length and if the keyword verts exists and yields
an NCELLS by 8 integer array, then we have an unstructured
rectangular mesh, and the subscripts of cell i's vertices
are verts[i, 0:8].
Added by ZCM 10/10/97: if x, y, and z are one-dimensional
of the same length or not, and verts does not exist, then
we have a structured reectangular mesh with unequally spaced
nodes.
Other sorts of meshes are possible -- a mesh which lives
in a binary file is an obvious example -- which would need
different workers for xyz3, getv3, getc3, and iterator3
iterator3_rect may be more general than the other three;
as long as the cell dimensions are the car of the list
which is the 2nd car of m3, it will work.
"""
dims = shape (x)
if len (dims) == 1 and y != None and len (x) == len (y) \
and z != None and len(x) == len (z) and kw.has_key ("verts") :
virtuals = [xyz3_irreg, getv3_irreg,
getc3_irreg, iterator3_irreg]
dims = kw ["verts"]
if type (dims) != ListType :
m3 = [virtuals, [dims, array ( [x, y, z])], []]
else : # Irregular mesh with more than one cell type
sizes = ()
for nv in dims :
sizes = sizes + (shape (nv) [0],) # no. cells of this type
totals = [sizes [0]]
for i in range (1, len (sizes)) :
totals.append (totals [i - 1] + sizes [i]) #total cells so far
m3 = [virtuals, [dims, array ( [x, y, z]), sizes, totals], []]
if kw.has_key ("funcs") :
funcs = kw ["funcs"]
else :
funcs = []
i = 0
for f in funcs:
if len (f) != len (x) and len (f) != shape (dims) [0] :
# if vertex-centered, f must be same size as x.
# if zone centered, its length must match number of cells.
raise _Mesh3Error, "F" + `i` + " is not a viable 3D cell value"
m3 [2] = m3 [2] + [f]
i = i + 1
return m3
virtuals = [xyz3_rect, getv3_rect, getc3_rect, iterator3_rect]
if len (dims) == 4 and dims [0] == 3 and min (dims) >= 2 :
xyz = x
dims = dims [1:4]
elif len (dims) == 1 and len (x) == 3 and type (x [0]) == IntType \
and y != None and z != None and len (y) == len (z) == 3 :
xyz = array ([y, z])
dims = (1 + x [0], 1 + x [1], 1 + x [2])
virtuals [0] = xyz3_unif
elif len (dims) == 1 and y != None and z != None and len (y.shape) == 1 \
and len (z.shape) == 1 and x.typed == y.typed == \
z.typed == Float :
# regular mesh with unequally spaced points
dims = array ( [len (x), len (y), len (z)], Int)
xyz = [x, y, z] # has to be a list since could be different lengths
virtuals [0] = xyz3_unif
else :
if len (dims) != 3 or min (dims) < 2 or \
y == None or len (shape (y)) != 3 or shape (y) != dims or \
z == None or len (shape (z)) != 3 or shape (z) != dims:
raise _Mesh3Error, "X,Y,Z are not viable 3D coordinate mesh arrays"
xyz = array ( [x, y, z])
dim_cell = (dims [0] - 1, dims [1] - 1, dims [2] - 1)
m3 = [virtuals, [dim_cell, xyz], []]
if kw.has_key ("funcs") :
funcs = kw ["funcs"]
else :
funcs = []
i = 0
for f in funcs:
if len (f.shape) == 3 and \
( (f.shape [0] == dims [0] and f.shape [1] == dims [1] and
f.shape [2] == dims [2]) or (f.shape [0] == dim_cell [0] and
f.shape [1] == dim_cell [1] and f.shape [2] == dim_cell [2])) :
m3 [2] = m3 [2] + [f]
i = i + 1
else :
raise _Mesh3Error, "F" + `i` + " is not a viable 3D cell value"
return m3
# Ways that a list of polygons can be extracted:
# Basic idea:
# (1) At each *vertex* of the cell list, a function value is defined.
# This is the "slicing function", perhaps the equation of a plane,
# perhaps some other vertex-centered function.
# (2) The slice3 routine returns a list of cells for which the
# function value changes sign -- that is, cells for which some
# vertices have positive function values, and some negative.
# The function values and vertex coordinates are also returned.
# (3) The slice3 routine computes the points along the *edges*
# of each cell where the function value is zero (assuming linear
# variation along each edge). These points will be vertices of
# the polygons. The routine also sorts the vertices into cyclic
# order.
# (4) A "color function" can be used to assign a "color" or other
# value to each polygon. If this function depends only on the
# coordinates of the polygon vertices (e.g.- 3D lighting), then
# the calculation can be done elsewhere. There are two other
# possibilities: The color function might be a cell-centered
# quantity, or a vertex-centered quantity (like the slicing
# function) on the mesh. In these cases, slice3 already
# has done much of the work, since it "knows" cell indices,
# edge interpolation coefficients, and the like.
#
# There are two particularly important cases:
# (1) Slicing function is a plane, coloring function is either a
# vertex or cell centered mesh function. Coloring function
# might also be a *function* of one or more of the predefined
# mesh functions. If you're eventually going to sweep the whole
# mesh, you want to precalculate it, otherwise on-the-fly might
# be better.
# (2) Slicing function is a vertex centered mesh function,
# coloring function is 3D shading (deferred).
#
# fslice(m3, vertex_list)
# vertex_list_iterator(m3, vertex_list, mesh3)
# fcolor(m3, vertex_list, fslice_1, fslice_2)
# the coloring function may need the value of fslice at the vertices
# in order to compute the color values by interpolation
# two "edge functions": one to detect edges where sign of fslice changes,
# second to interpolate for fcolor
# second to interpolate for fcolor
#
# slice3(m3, fslice, &nverts, &xyzverts, <fcolor>)
_Slice3Error = "Slice3Error"
def slice3 (m3, fslice, nverts, xyzverts, * args, ** kw) :
"""
slice3 (m3, fslice, nverts, xyzverts)
or color_values= slice3(m3, fslice, nverts, xyzverts, fcolor)
or color_values= slice3(m3, fslice, nverts, xyzverts, fcolor, 1)
slice the 3D mesh M3 using the slicing function FSLICE, returning
the list [NVERTS, XYZVERTS, color]. Note that it is impossible to
pass arguments as addresses, as yorick does in this routine.
NVERTS is the number of vertices in each polygon of the slice, and
XYZVERTS is the 3-by-sum(NVERTS,axis=0) list of polygon vertices. If the
FCOLOR argument is present, the values of that coloring function on
the polygons are returned as the value of the slice3 function
(numberof(color_values) == numberof(NVERTS) == number of polygons).
If the slice function FSLICE is a function, it should be of the
form:
func fslice(m3, chunk)
returning a list of function values on the specified chunk of the
mesh m3. The format of chunk depends on the type of m3 mesh, so
you should use only the other mesh functions xyz3 and getv3 which
take m3 and chunk as arguments. The return value of fslice should
have the same dimensions as the return value of getv3; the return
value of xyz3 has an additional first dimension of length 3.
If FSLICE is a list of 4 numbers, it is taken as a slicing plane
with the equation FSLICE(+:1:3)*xyz(+)-FSLICE(4), as returned by
plane3.
If FSLICE is a single integer, the slice will be an isosurface for
the FSLICEth variable associated with the mesh M3. In this case,
the keyword value= must also be present, representing the value
of that variable on the isosurface.
If FCOLOR is nil, slice3 returns nil. If you want to color the
polygons in a manner that depends only on their vertex coordinates
(e.g.- by a 3D shading calculation), use this mode.
If FCOLOR is a function, it should be of the form:
func fcolor(m3, cells, l, u, fsl, fsu, ihist)
returning a list of function values on the specified cells of the
mesh m3. The cells argument will be the list of cell indices in
m3 at which values are to be returned. l, u, fsl, fsu, and ihist
are interpolation coefficients which can be used to interpolate
from vertex centered values to the required cell centered values,
ignoring the cells argument. See getc3 source code.
The return values should always have dimsof(cells).
If FCOLOR is a single integer, the slice will be an isosurface for
the FCOLORth variable associated with the mesh M3.
If the optional argument after FCOLOR is non-nil and non-zero,
then the FCOLOR function is called with only two arguments:
func fcolor(m3, cells)
The keyword argument NODE, if present and nonzero, is a signal
to return node-centered values rather than cell-centered
values. (ZCM 4/16/97)
"""
global _poly_permutations
iso_index = None
if type (fslice) != FunctionType :
if not kw.has_key ("value") and not is_scalar (fslice) and \
len (shape (fslice)) == 1 and len (fslice) == 4 :
normal = fslice [0:3]
projection = fslice [3]
fslice = _plane_slicer
elif is_scalar (fslice) and type (fslice) == IntType :
if not kw.has_key ("value") :
raise _Slice3Error, \
"value= keyword required when FSLICE is mesh variable"
_value = kw ["value"]
iso_index = fslice
fslice = _isosurface_slicer
else :
raise _Slice3Error, \
"illegal form of FSLICE argument, try help,slice3"
if kw.has_key ("node") :
node = kw ["node"]
else :
node = 0
# will need cell list if fcolor function to be computed
need_clist = len (args) > 0
if len (args) > 1 :
nointerp = args [1]
else :
nointerp = None
if need_clist :
fcolor = args [0]
if fcolor == None :
need_clist = 0
else :
fcolor = None
# test the different possibilities for fcolor
if need_clist and type (fcolor) != FunctionType :
if not is_scalar (fcolor) or type (fcolor) != IntType :
raise _Slice3Error, \
"illegal form of FCOLOR argument, try help,slice3"
# chunk up the m3 mesh and evaluate the slicing function to
# find those cells cut by fslice==0
# chunking avoids potentially disastrously large temporaries
got_xyz = 0
ntotal = 0
# The following are used only for an irregular mesh, to
# give the sizes of each portion of the mesh.
ntotal8 = 0
ntotal6 = 0
ntotal5 = 0
ntotal4 = 0
# The following are used only for an irregular mesh, to
# give the indices of the different types of chunk in the
# results list.
i8 = []
i6 = []
i5 = []
i4 = []
itot = [i4, i5, i6, i8]
nchunk = 0
results = []
chunk = iterator3 (m3)
cell_offsets = [0, 0, 0, 0]
while chunk != None :
# get the values of the slicing function at the vertices of
# this chunk
if fslice == _isosurface_slicer :
fs = fslice (m3, chunk, iso_index, _value)
# an isosurface slicer brings back a list [vals, None]
# where vals is simply an array of the values of the
# iso_index'th function on the vertices of the specified
# chunk, or a triple, consisting of the array of
# values, an array of relative cell numbers in the
# chunk, and an offset to add to the preceding to
# get absolute cell numbers.
elif fslice == _plane_slicer :
fs = fslice (m3, chunk, normal, projection)
# In the case of a plane slice, fs is a list [vals, _xyz3]
# (or [ [vals, clist, cell_offset], _xyz3] in the irregular case)
# where _xyz3 is the array of vertices of the chunk. _xyz3
# is ncells by 3 by something (in the irregular case),
# ncells by 3 by 2 by 2 by 2 in the regular case,
# and 3 by ni by nj by nk otherwise. vals will be
# the values of the projections of the corresponding
# vertex on the normal to the plane, positive if in
# front, and negative if in back.
else :
fs = fslice (m3, chunk)
if node == 1 and fcolor != None and fcolor != FunctionType :
# need vertex-centered data
col = getv3 (fcolor, m3, chunk)
if type (col) == ListType :
col = col [0]
else :
col = None
# ZCM 2/24/97 Elimination of _xyz3 as a global necessitates the following:
# (_xyz3 comes back as the last element of the list fs)
_xyz3 = fs [1]
fs = fs [0]
irregular = type (fs) == ListType
if irregular :
cell_offset = fs [2]
# will need cell list if fslice did not compute xyz
got_xyz = _xyz3 != None
need_clist = need_clist or not got_xyz
# If the m3 mesh is totally unstructured, the chunk should be
# arranged so that fslice returns an ncells-by-2-by-2-by-2
# (or ncells-by-3-by-2 or ncells-by-5 or ncells-by-4) array
# of vertex values of the slicing function. Note that a
# chunk of an irregular mesh always consists of just one
# kind of cell.
# On the other hand, if the mesh vertices are arranged in a
# rectangular grid (or a few patches of rectangular grids), the
# chunk should be the far less redundant rectangular patch.
if (irregular) :
# fs is a 2-sequence, of which the first element is an ncells-by-
# 2-by-2-by-2 (by-3-by-2, by-5, or by-4) array, and the second
# is the array of corresponding cell numbers.
# here is the fastest way to generate the required cell list
dims = shape (fs [0])
dim1 = dims [0]
slice3_precision = 0.0
if len (dims) == 4 : # hex case
# Note that the sum below will be between 1 and 7
# precisely if f changes sign in the cell.
critical_cells = bitwise_and (add.reduce \
(reshape (ravel (transpose (less (fs [0], slice3_precision))), \
(8, dim1))), 7)
if (sum (critical_cells,axis=0) != 0) :
clist = take (fs [1], nonzero (critical_cells),axis=0)
ntotal8 = ntotal8 + len (clist)
else :
clist = None
i8.append (len (results))
cell_offsets [3] = cell_offset
elif len (dims) == 3 : # prism case
# Note that the sum below will be between 1 and 5
# precisely if f changes sign in the cell.
critical_cells = add.reduce \
(reshape (ravel (transpose (less (fs [0], slice3_precision))), \
(6, dim1)))
critical_cells = logical_and (greater (critical_cells, 0),
less (critical_cells, 6))
if (sum (critical_cells,axis=0) != 0) :
clist = take (fs [1], nonzero (critical_cells),axis=0)
ntotal6 = ntotal6 + len (clist)
else :
clist = None
i6.append (len (results))
cell_offsets [2] = cell_offset
elif dims [1] == 5 : # pyramid case
# Note that the sum below will be between 1 and 4
# precisely if f changes sign in the cell.
critical_cells = add.reduce \
(reshape (ravel (transpose (less (fs [0], slice3_precision))), \
(5, dim1)))
critical_cells = logical_and (greater (critical_cells, 0),
less (critical_cells, 5))
if (sum (critical_cells,axis=0) != 0) :
clist = take (fs [1], nonzero (critical_cells),axis=0)
ntotal5 = ntotal5 + len (clist)
else :
clist = None
i5.append (len (results))
cell_offsets [1] = cell_offset
else : # tet case
# Note that the sum below will be between 1 and 3
# precisely if f changes sign in the cell.
critical_cells = bitwise_and (add.reduce \
(reshape (ravel (transpose (less (fs [0], slice3_precision))), \
(4, dim1))), 3)
if (sum (critical_cells,axis=0) != 0) :
clist = take (fs [1], nonzero (critical_cells),axis=0)
ntotal4 = ntotal4 + len (clist)
else :
clist = None
i4.append (len (results))
cell_offsets [0] = cell_offset
else :
dims = shape (fs)
# fs is an ni-by-nj-by-nk array
# result of the zcen is 0, 1/8, 2/8, ..., 7/8, or 1
# slice3_precision = max (ravel (abs (fs))) * (-1.e-12)
slice3_precision = 0
clist1 = ravel (zcen_ (zcen_ (zcen_
(array (less (fs, slice3_precision), Float), 0), 1), 2))
clist1 = logical_and (less (clist1, .9), greater (clist1, .1))
if sum (clist1,axis=0) > 0 :
clist = nonzero (clist1)
ntotal = ntotal + len (clist)
else :
clist = None
i8.append (len (results)) # Treat regular case as hex
if clist != None :
# we need to save:
# (1) the absolute cell indices of the cells in clist
# (2) the corresponding ncells-by-2-by-2-by-2 (by-3-by-2,
# by-5, or by-4) list of fslice
# values at the vertices of these cells
if (irregular) :
# extract the portions of the data indexed by clist
fs = take (fs [0], clist,axis=0)
if got_xyz :
_xyz3 = take (_xyz3, clist,axis=0)
if col :
col = take (col, clist,axis=0)
else :
# extract the to_corners portions of the data indexed by clist
indices = to_corners3 (clist, dims [1], dims [2])
no_cells = shape (indices) [0]
indices = ravel (indices)
fs = reshape (take (ravel (fs), indices,axis=0),\
(no_cells, 2, 2, 2))
if got_xyz :
new_xyz3 = zeros ( (no_cells, 3, 2, 2, 2), Float )
new_xyz3 [:, 0, ...] = reshape (take (ravel (_xyz3 [0, ...]),\
indices,axis=0), (no_cells, 2, 2, 2))
new_xyz3 [:, 1, ...] = reshape (take (ravel (_xyz3 [1, ...]),\
indices,axis=0), (no_cells, 2, 2, 2))
new_xyz3 [:, 2, ...] = reshape (take (ravel (_xyz3 [2, ...]),\
indices,axis=0), (no_cells, 2, 2, 2))
_xyz3 = new_xyz3
del new_xyz3
if col != None :
col = reshape (take (ravel (col), indices,axis=0), (no_cells, 2, 2, 2))
# NB: col represents node colors, and is only used
# if those are requested.
# here, the iterator converts to absolute cell indices without
# incrementing the chunk
if (need_clist) :
clist = iterator3 (m3, chunk, clist)
else :
clist = None
nchunk = nchunk + 1
need_vert_col = col != None
results.append ( [clist, fs, _xyz3, col])
else :
results.append ( [None, None, None, None])
chunk = iterator3 (m3, chunk)
# endwhile chunk != None
# collect the results of the chunking loop
if not ntotal and not (ntotal8 + ntotal6 + ntotal5 + ntotal4) :
return None
if ntotal : # (regular mesh, but can be handled same as hex)
ntotal8 = ntotal
i8 = range (len (results))
itot [3] = i8
ntot = [ntotal4, ntotal5, ntotal6, ntotal8]
new_results = []
for i in range (len (ntot)) :
# This loop processes each kind of cell independently,
# the results to be combined at the end.
if ntot [i] == 0 : # No cells of type i
continue
if need_clist :
clist = zeros (ntot [i], Int)
fs = zeros ( (ntot [i], _no_verts [i]), Float )
if got_xyz :
xyz = zeros ( (ntot [i], 3, _no_verts [i]), Float )
else :
xyz = None
if need_vert_col :
col = zeros ( (ntot [i], _no_verts [i]), Float )
else :
col = None
k = 0
# collect the results of the chunking loop
for j in range (len (itot [i])) :
l = k
k = k + len (results [itot [i] [j]] [0])
if need_clist :
clist [l:k] = results [itot [i] [j]] [0]
fs [l:k] = reshape (results [itot [i] [j]] [1], (k - l, _no_verts [i]))
if xyz != None :
xyz [l:k] = reshape (results [itot [i] [j]] [2],
(k - l, 3, _no_verts [i]))
if col != None :
col [l:k] = reshape (results [itot [i] [j]] [3],
(k - l, _no_verts [i]))
if not got_xyz :
# zcm 2/4/97 go to absolute cell list again
if i > 0 and len (m3 [1]) > 2 :
adder = m3 [1] [3] [i - 1]
else :
adder = 0
xyz = reshape (xyz3 (m3, clist + adder), (ntot [i], 3, _no_verts [i]))
# produce the lists of edge intersection points
# -- generate (nsliced)x12 (9, 8, 6) array of edge mask values
# (mask non-zero if edge is cut by plane)
below = less (fs, 0.0)
# I put the following into C for speed
mask = find_mask (below, _node_edges [i])
list = nonzero (mask)
edges = array (list, copy = 1)
cells = edges / _no_edges [i]
edges = edges % _no_edges [i]
# construct edge endpoint indices in fs, xyz arrays
# the numbers are the endpoint indices corresponding to
# the order of the _no_edges [i] edges in the mask array
lower = take (_lower_vert [i], edges,axis=0) + _no_verts [i] * cells
upper = take (_upper_vert [i], edges,axis=0) + _no_verts [i] * cells
fsl = take (ravel (fs), lower,axis=0)
fsu = take (ravel (fs), upper,axis=0)
# following denominator guaranteed non-zero
denom = fsu - fsl
fsu = fsu / denom
fsl = fsl / denom
new_xyz = zeros ( (len (lower), 3), Float )
new_xyz [:, 0] = reshape ( (take (ravel (xyz [:, 0]), lower,axis=0) * fsu - \
take (ravel (xyz [:, 0]), upper,axis=0) * fsl), (len (lower),))
new_xyz [:, 1] = reshape ( (take (ravel (xyz [:, 1]), lower,axis=0) * fsu - \
take (ravel (xyz [:, 1]), upper,axis=0) * fsl), (len (lower),))
new_xyz [:, 2] = reshape ( (take (ravel (xyz [:, 2]), lower,axis=0) * fsu - \
take (ravel (xyz [:, 2]), upper,axis=0) * fsl), (len (lower),))
xyz = new_xyz
del new_xyz
if col != None :
# Extract subset of the data the same way
col = take (ravel (col), lower,axis=0) * fsu - \
take (ravel (col), upper,axis=0) * fsl
# The xyz array is now the output xyzverts array,
# but for the order of the points within each cell.
# give each sliced cell a "pattern index" between 0 and 255
# (non-inclusive) representing the pattern of its 8 corners
# above and below the slicing plane
p2 = left_shift (ones (_no_verts [i], Int) , array (
[0, 1, 2, 3, 4, 5, 6, 7], Int) [0: _no_verts [i]])
pattern = transpose (sum (transpose (multiply (below, p2)),axis=0))
# broadcast the cell's pattern onto each of its sliced edges
pattern = take (pattern, list / _no_edges [i],axis=0)
# Let ne represent the number of edges of this type of cell,
# and nv the number of vertices.
# To each pattern, there corresponds a permutation of the
# twelve edges so that they occur in the order in which the
# edges are to be connected. Let each such permuation be
# stored as a list of integers from 0 to ne - 1 such that
# sorting the integers into increasing order rearranges the edges at
# the corresponding indices into the correct order. (The position
# of unsliced edges in the list is arbitrary as long as the sliced
# edges are in the proper order relative to each other.)
# Let these permutations be stored in a ne-by-2**nv - 2 array
# _poly_permutations (see next comment for explanation of 4 * ne):
pattern = take (ravel (transpose (_poly_permutations [i])),
_no_edges [i] * (pattern - 1) + edges,axis=0) + 4 * _no_edges [i] * cells
order = argsort (pattern)
xyz1 = zeros ( (len (order), 3), Float )
xyz1 [:,0] = take (ravel (xyz [:,0]), order,axis=0)
xyz1 [:,1] = take (ravel (xyz [:,1]), order,axis=0)
xyz1 [:,2] = take (ravel (xyz [:,2]), order,axis=0)
xyz = xyz1
if col != None :
col = take (col, order,axis=0)
edges = take (edges, order,axis=0)
pattern = take (pattern, order,axis=0)
# cells(order) is same as cells by construction */
# There remains only the question of splitting the points in
# a single cell into multiple disjoint polygons.
# To do this, we need one more precomputed array: poly_splits
# should be another ne-by-2**nv - 2 array with values between 0 and 3
# 0 for each edge on the first part, 1 for each edge on the
# second part, and so on up to 3 for each edge on the fourth
# part. The value on unsliced edges can be anything, say 0.
# With a little cleverness poly_splits can be combined with
# _poly_permutations, by putting _poly_permutations =
# _poly_permutations(as described above) + _no_edges [i]*poly_splits
# (this doesn't change the ordering of _poly_permutations).
# I assume this has been done here:
pattern = pattern / _no_edges [i]
# now pattern jumps by 4 between cells, smaller jumps within cells
# get the list of places where a new value begins, and form a
# new pattern with values that increment by 1 between each plateau
pattern = dif_ (pattern, 0)
nz = nonzero (pattern)
list = zeros (len (nz) + 1, Int)
list [1:] = nz + 1
newpat = zeros (len (pattern) + 1, Int)
newpat [0] = 1
newpat [1:] = cumsum (not_equal (pattern, 0),axis=0) + 1
pattern = newpat
nverts = histogram (pattern) [1:]
xyzverts = xyz
# finally, deal with any fcolor function
if fcolor == None :
new_results.append ( [nverts, xyzverts, None])
continue
# if some polys have been split, need to split clist as well
if len (list) > len (clist) :
clist = take (clist, take (cells, list, axis=0),axis=0)
if col == None :
if nointerp == None :
if type (fcolor) == FunctionType :
col = fcolor (m3, clist + cell_offsets [i], lower, upper, fsl,
fsu, pattern - 1)
else :
col = getc3 (fcolor, m3, clist + cell_offsets [i], lower, upper,
fsl, fsu, pattern - 1)
else :
if type (fcolor) == FunctionType :
col = fcolor (m3, clist + cell_offsets [i])
else :
col = getc3 (fcolor, m3, clist + cell_offsets [i])
new_results.append ( [nverts, xyzverts, col])
# New loop to consolidate the return values
nv_n = 0
xyzv_n = 0
col_n = 0
for i in range (len (new_results)) :
nv_n = nv_n + len (new_results [i] [0])
xyzv_n = xyzv_n + shape (new_results [i] [1]) [0]
if new_results [i] [2] != None :
col_n = col_n + len (new_results [i] [2])
nverts = zeros (nv_n, Int)
xyzverts = zeros ( (xyzv_n, 3), Float )
if col_n != 0 :
col = zeros (col_n, Float )
else :
col = None
nv_n1 = 0
xyzv_n1 = 0
col_n1 = 0
for i in range (len (new_results)) :
nv_n2 = len (new_results [i] [0])
xyzv_n2 = shape (new_results [i] [1]) [0]
nverts [nv_n1:nv_n1 + nv_n2] = new_results [i] [0]
xyzverts [xyzv_n1:xyzv_n1 + xyzv_n2] = new_results [i] [1]
if new_results [i] [2] != None :
col_n2 = len (new_results [i] [2])
col [col_n1:col_n1 + col_n2] = new_results [i] [2]
col_n1 = col_n1 + col_n2
nv_n1 = nv_n1 + nv_n2
xyzv_n1 = xyzv_n1 + xyzv_n2
return [nverts, xyzverts, col]
# The iterator3 function combines three distinct operations:
# (1) If only the M3 argument is given, return the initial
# chunk of the mesh. The chunk will be no more than
# _chunk3_limit cells of the mesh.
# (2) If only M3 and CHUNK are given, return the next CHUNK,
# or [] if there are no more chunks.
# (3) If M3, CHUNK, and CLIST are all specified, return the
# absolute cell index list corresponding to the index list
# CLIST of the cells in the CHUNK.
# Do not increment the chunk in this case.
#
# The form of the CHUNK argument and return value for cases (1)
# and (2) is not specified, but it must be recognized by the
# xyz3 and getv3 functions which go along with this iterator3.
# (For case (3), CLIST and the return value are both ordinary
# index lists.)
_Slice3MeshError = "Slice3MeshError"
def slice3mesh (xyz, * args, ** kw) :
"""
slice3mesh returns a triple [nverts, xyzverts, color]
nverts is no_cells long and the ith entry tells how many
vertices the ith cell has.
xyzverts is sum (nverts,axis=0) by 3 and gives the vertex
coordinates of the cells in order.
color, if present, is len (nverts) long and contains
a color value for each cell in the mesh.
There are a number of ways to call slice3mesh:
slice3mesh (z, color = None)
z is a two dimensional array of cell function values, assumed
to be on a uniform mesh nx by ny cells (assuming z is nx by ny)
nx being the number of cells in the x direction, ny the number
in the y direction.
color, if specified, is either an nx by ny array
of cell-centered values by which the surface is to
be colored, or an nx +1 by ny + 1 array of vertex-
centered values, which will be averaged over each
cell to give cell-centered values.
slice3mesh (nxny, dxdy, x0y0, z, color = None)
In this case, slice3mesh accepts the specification for
a regular 2d mesh: nxny is the number of cells in the
x direction and the y direction; x0y0 are the initial
values of x and y; and dxdy are the increments in the
two directions. z is the height of a surface above
the xy plane and must be dimensioned nx + 1 by ny + 1.
color, if specified, is as above.
slice3mesh (x, y, z, color = None)
z is as above, an nx by ny array of function values
on a mesh of the same dimensions. There are two choices
for x and y: they can both be one-dimensional, dimensioned
nx and ny respectively, in which case they represent a
mesh whose edges are parallel to the axes; or else they
can both be nx by ny, in which case they represent a
general quadrilateral mesh.
color, if specified, is as above.
"""
two_d = 0
if kw.has_key ("smooth") :
smooth = kw ["smooth"]
else :
smooth = 0
if len (args) == 0 :
# Only the z argument is present
if len (shape (xyz)) != 2 :
raise _Slice3MeshError, \
"z must be two dimensional."
else :
z = xyz
ncx = shape (xyz) [0]
ncy = shape (xyz) [1]
x = arange (ncx, dtype = Float )
y = arange (ncy, dtype = Float )
elif len (args) == 3 :
# must be the (nxny, dxdy, x0y0, z...) form
ncx = xyz [0] + 1
ncy = xyz [1] + 1
x = arange (ncx, dtype = Float ) * args [0] [0] + args [1] [0]
y = arange (ncy, dtype = Float ) * args [0] [1] + args [1] [1]
z = args [2]
if (ncx, ncy) != shape (z) :
raise _Slice3MeshError, \
"The shape of z must match the shape of x and y."
elif len (args) == 2 :
# must be the x, y, z format
x = xyz
y = args [0]
z = args [1]
dims = shape (x)
if len (dims) == 2 :
two_d = 1
if dims != shape (y) or dims != shape (z) :
raise _Slice3MeshError, \
"The shapes of x, y, and z must match."
ncx = dims [0]
ncy = dims [1]
elif len (dims) == 1 :
ncx = dims [0]
ncy = len (y)
if (ncx, ncy) != shape (z) :
raise _Slice3MeshError, \
"The shape of z must match the shape of x and y."
else :
raise _Slice3MeshError, \
"Unable to decipher arguments to slice3mesh."
else :
raise _Slice3MeshError, \
"Unable to decipher arguments to slice3mesh."
nverts = ones ( (ncx - 1) * (ncy - 1), Int) * 4
ncxx = arange (ncx - 1, dtype = Int) * (ncy)
ncyy = arange (ncy - 1, dtype = Int)
if kw.has_key ("color") :
color = kw ["color"]
else :
color = None
if color != None :
# col = array (len (nverts), Float )
if shape (color) == (ncx - 1, ncy - 1) :
col = color
elif shape (color) == (ncx, ncy) and smooth == 0 :
col = ravel (color)
# Lower left, upper left, upper right, lower right
col = 0.25 * (take (col, ravel (add.outer ( ncxx, ncyy)),axis=0) +
take (col, ravel (add.outer ( ncxx, ncyy + 1)),axis=0) +
take (col, ravel (add.outer ( ncxx + ncy, ncyy + 1)),axis=0) +
take (col, ravel (add.outer ( ncxx + ncy, ncyy)),axis=0))
elif shape (color) == (ncx, ncy) and smooth != 0 :
# Node-centered colors are wanted (smooth plots)
col = ravel (color)
col = ravel (transpose (array ( [
take (col, ravel (add.outer ( ncxx, ncyy)),axis=0),
take (col, ravel (add.outer ( ncxx, ncyy + 1)),axis=0),
take (col, ravel (add.outer ( ncxx + ncy, ncyy + 1)),axis=0),
take (col, ravel (add.outer ( ncxx + ncy, ncyy)),axis=0)])))
else :
raise _Slice3MeshError, \
"color must be cell-centered or vertex centered."
else :
col = None
xyzverts = zeros ( (4 * (ncx -1) * (ncy -1), 3), Float )
if not two_d :
x1 = multiply.outer (ones (ncy - 1, Float), x [0:ncx - 1])
x2 = multiply.outer (ones (ncy - 1, Float), x [1:ncx])
xyzverts [:, 0] = ravel (transpose (array ([x1, x1, x2, x2])))
del x1, x2
y1 = multiply.outer (y [0:ncy - 1], ones (ncx - 1))
y2 = multiply.outer (y [1:ncy], ones (ncx - 1))
xyzverts [:, 1] = ravel (transpose (array ([y1, y2, y2, y1])))
del y1, y2
else :
newx = ravel (x)
xyzverts [:, 0] = ravel (transpose (array ( [
take (newx, ravel (add.outer ( ncxx, ncyy)),axis=0),
take (newx, ravel (add.outer ( ncxx, ncyy + 1)),axis=0),
take (newx, ravel (add.outer ( ncxx + ncy, ncyy + 1)),axis=0),
take (newx, ravel (add.outer ( ncxx + ncy, ncyy)),axis=0)])))
newy = ravel (y)
xyzverts [:, 1] = ravel (transpose (array ( [
take (newy, ravel (add.outer ( ncxx, ncyy)),axis=0),
take (newy, ravel (add.outer ( ncxx, ncyy + 1)),axis=0),
take (newy, ravel (add.outer ( ncxx + ncy, ncyy + 1)),axis=0),
take (newy, ravel (add.outer ( ncxx + ncy, ncyy)),axis=0)])))
newz = ravel (z)
xyzverts [:, 2] = ravel (transpose (array ( [
take (newz, ravel (add.outer ( ncxx, ncyy)),axis=0),
take (newz, ravel (add.outer ( ncxx, ncyy + 1)),axis=0),
take (newz, ravel (add.outer ( ncxx + ncy, ncyy + 1)),axis=0),
take (newz, ravel (add.outer ( ncxx + ncy, ncyy)),axis=0)])))
return [nverts, xyzverts, col]
def iterator3 (m3 , chunk = None, clist = None) :
"""
iterator3 (m3)
iterator3 (m3, chunk, clist)
iterator3_rect (m3)
iterator3_rect (m3, chunk, clist)
iterator3_irreg (m3)
iterator3_irreg (m3, chunk, clist)
The iterator3 functions combine three distinct operations:
(1) If only the M3 argument is given, return the initial
chunk of the mesh. The chunk will be no more than
chunk3_limit cells of the mesh.
(2) If only M3 and CHUNK are given, return the next CHUNK,
or None if there are no more chunks.
(3) If M3, CHUNK, and CLIST are all specified, return the
absolute cell index list corresponding to the index list
CLIST of the cells in the CHUNK.
Do not increment the chunk in this case.
The form of the CHUNK argument and return value for cases (1)
and (2) is not specified, but it must be recognized by the
xyz3 and getv3 functions which go along with this iterator3.
(For case (3), CLIST and the return value are both ordinary
index lists.)
In the irregular case, it is guaranteed that the returned chunk
consists of only one type of cell (tetrahedra, hexahedra,
pyramids, or prisms).
"""
return m3 [0] [3] (m3, chunk, clist)
# biggest temporary is 3 doubles times this,
# perhaps 4 or 5 doubles times this is most at one time
_chunk3_limit = 10000
def iterator3_rect (m3, chunk, clist) :
"""
iterator3 (m3)
iterator3 (m3, chunk, clist)
iterator3_rect (m3)
iterator3_rect (m3, chunk, clist)
iterator3_irreg (m3)
iterator3_irreg (m3, chunk, clist)
The iterator3 functions combine three distinct operations:
(1) If only the M3 argument is given, return the initial
chunk of the mesh. The chunk will be no more than
chunk3_limit cells of the mesh.
(2) If only M3 and CHUNK are given, return the next CHUNK,
or None if there are no more chunks.
(3) If M3, CHUNK, and CLIST are all specified, return the
absolute cell index list corresponding to the index list
CLIST of the cells in the CHUNK.
Do not increment the chunk in this case.
The form of the CHUNK argument and return value for cases (1)
and (2) is not specified, but it must be recognized by the
xyz3 and getv3 functions which go along with this iterator3.
(For case (3), CLIST and the return value are both ordinary
index lists.)
In the irregular case, it is guaranteed that the returned chunk
consists of only one type of cell (tetrahedra, hexahedra,
pyramids, or prisms).
"""
# Note: if you look at the yorick version of this routine, you
# will see that the significance of the subscripts is reversed.
# This is because we do things in row-major order.
global _chunk3_limit
if chunk == None :
dims = m3 [1] [0] # [ni,nj,nk] cell dimensions
[ni, nj, nk] = [dims [0], dims [1], dims [2]]
njnk = nj * nk
if _chunk3_limit <= nk :
# stuck with 1D chunks
ck = (nk - 1) / _chunk3_limit + 1
cj = ci = 0
elif _chunk3_limit <= njnk :
# 2D chunks
ci = ck = 0
cj = (njnk - 1) / _chunk3_limit + 1
else :
# 3D chunks
cj = ck = 0
ci = (njnk * ni - 1) / _chunk3_limit + 1
chunk = array ( [[ci == 0, cj == 0, ck == 0],
[not ci, nj * (ci != 0) + (ck != 0),
nk * ( (cj + ci) != 0)],
[ci, cj, ck], [ni, nj, nk]])
else :
ni = chunk [3,0]
nj = chunk [3,1]
nk = chunk [3,2]
njnk = nj * nk
offsets = array ( [njnk, nj, 1], Int)
if clist != None :
# add offset for this chunk to clist and return
return sum (offsets * ( chunk [0] - 1),axis=0) + clist
# increment to next chunk
xi = chunk [1, 0]
xj = chunk [1, 1]
xk = chunk [1, 2]
np = chunk [2, 2]
if (np) :
# 1D chunks
if xk == nk :
if xj == nj :
if xi == ni : return None
xi = xi + 1
xj = 1;
else :
xj = xj + 1
xk = 0
ck = xk + 1
step = ck / np
frst = ck % np # first frst steps are step+1
if (xk < (step + 1) * frst) : step = step + 1
xk = xk + step
chunk [0] = array ( [xi, xj, ck])
chunk [1] = array ( [xi, xj, xk])
else :
np = chunk [2, 1]
if (np) :
if (xj == nj) :
if (xi == ni) : return None
xi = xi + 1
xj = 0
cj = xj + 1
step = nj / np
frst = nj % np # first frst steps are step+1
if (xj < (step + 1) * frst) : step = step + 1
xj = xj + step
chunk [0, 0:2] = array ( [xi, cj])
chunk [1, 0:2] = array ( [xi, xj])
else :
if xi == ni : return None
ci = xi + 1
np = chunk [2, 0]
step = ni / np
frst = ni % np # first frst steps are step+1
if (xi < (step + 1) * frst) : step = step + 1
xi = xi + step
chunk [0, 0] = ci
chunk [1, 0] = xi
return chunk
def iterator3_irreg (m3, chunk, clist) :
"""
iterator3 (m3)
iterator3 (m3, chunk, clist)
iterator3_rect (m3)
iterator3_rect (m3, chunk, clist)
iterator3_irreg (m3)
iterator3_irreg (m3, chunk, clist)
The iterator3 functions combine three distinct operations:
(1) If only the M3 argument is given, return the initial
chunk of the mesh. The chunk will be no more than
chunk3_limit cells of the mesh.
(2) If only M3 and CHUNK are given, return the next CHUNK,
or None if there are no more chunks.
(3) If M3, CHUNK, and CLIST are all specified, return the
absolute cell index list corresponding to the index list
CLIST of the cells in the CHUNK.
Do not increment the chunk in this case.
The form of the CHUNK argument and return value for cases (1)
and (2) is not specified, but it must be recognized by the
xyz3 and getv3 functions which go along with this iterator3.
(For case (3), CLIST and the return value are both ordinary
index lists.)
In the irregular case, it is guaranteed that the returned chunk
consists of only one type of cell (tetrahedra, hexahedra,
pyramids, or prisms).
iterator3_irreg Does the same thing as iterator3_rect only for an
irregular rectangular mesh. It simply splits a large mesh into smaller
parts. Whether this is necessary I am not sure.
Certainly it makes it easier in the irregular case to handle
the four different types of cells separately.
if clist is present, in the irregular case it is already
the list of absolute cell indices, so it is simply returned.
This and other routines to do with irregular meshes return a
chunk which is a 2-list. The first item delimits the chunk;
the second gives a list of corresponding cell numbers.
"""
global _chunk3_limit
if clist != None:
return clist
dims = m3 [1] [0] # ncells by _no_verts array of subscripts
# (or a list of from one to four of same)
if type (dims) != ListType :
if chunk == None: # get the first chunk
return [ [0, min (shape (dims) [0], _chunk3_limit)],
arange (0, min (shape (dims) [0], _chunk3_limit),
dtype = Int)]
else : # iterate to next chunk
start = chunk [0] [1]
if start >= shape(dims) [0] :
return None
else :
return [ [start, min (shape (dims) [0], start + _chunk3_limit)],
arange (start, min (shape (dims) [0],
start + _chunk3_limit),
dtype = Int)]
else :
totals = m3 [1] [3] # cumulative totals of numbers of cells
if chunk == None :
return [ [0, min (totals [0], _chunk3_limit)],
arange (0, min (totals [0], _chunk3_limit),
dtype = Int)]
else : # iterate to next chunk
start = chunk [0] [1]
if start >= totals [-1] :
return None
else :
for i in range (len (totals)) :
if start < totals [i] :
break
return [ [start, min (totals [i], start + _chunk3_limit)],
arange (start,
min (totals [i], start + _chunk3_limit),
dtype = Int)]
def getv3 (i, m3, chunk) :
"""
getv3(i, m3, chunk)
return vertex values of the Ith function attached to 3D mesh M3
for cells in the specified CHUNK. The CHUNK may be a list of
cell indices, in which case getv3 returns a 2x2x2x(dimsof(CHUNK))
list of vertex coordinates. CHUNK may also be a mesh-specific data
structure used in the slice3 routine, in which case getv3 may
return a (ni)x(nj)x(nk) array of vertex values. For meshes which
are logically rectangular or consist of several rectangular
patches, this is up to 8 times less data, with a concomitant
performance advantage. Use getv3 when writing slicing functions
for slice3.
"""
return m3 [0] [1] (i, m3, chunk)
_Getv3Error = "Getv3Error"
def getv3_rect (i, m3, chunk) :
"""
getv3_rect(i, m3, chunk) does the job for a regular rectangular
mesh.
"""
fi = m3 [2]
i = i - 1
if i < 0 or is_scalar (fi) or i >= len (fi) :
raise _Getv3Error, "no such mesh function as F" + `i`
dims = m3 [1] [0]
if dims == shape (fi [i]) :
raise _Getv3Error, "mesh function F" + `i` + " is not vertex-centered"
if len (shape (chunk)) != 1 :
c = chunk
# The difference here is that our arrays are 0-based, while
# yorick's are 1-based; and the last element in a range is not
# included in the result array.
return fi [i] [c [0, 0] - 1:1 + c [1, 0], c [0, 1] - 1:1 + c [1, 1] ,
c [0, 2] - 1:1 + c [1, 2]]
else :
# Need to create an array of fi values the same size and shape
# as what to_corners3 returns.
# To avoid exceedingly arcane calculations attempting to
# go backwards to a cell list, this branch returns the list
# [<function values>, chunk]
# Then it is trivial for slice3 to find a list of cell
# numbers in which fi changes sign.
indices = to_corners3 (chunk, dims [0] + 1, dims [1] + 1)
no_cells = shape (indices) [0]
indices = ravel (indices)
retval = reshape (take (ravel (fi [i]), indices,axis=0), (no_cells, 2, 2, 2))
return [retval, chunk]
def getv3_irreg (i, m3, chunk) :
"""
for an irregular mesh, returns a 3-list whose elements are:
(1) the function values for the ith function on the vertices of the
given chunk. (The function values must have the same dimension
as the coordinates; there is no attempt to convert zone-centered
values to vertex-centered values.)
(2) an array of relative cell numbers within the list of cells
of this type.
(3) a number that can be added to these relative numbers to gives
the absolute cell numbers for correct access to their coordinates
and function values.
"""
fi = m3 [2]
i = i - 1
if i < 0 or is_scalar (fi) or i >= len (fi) :
raise _Getv3Error, "no such function as F" + `i`
# len (fi [i]) and the second dimension of m3 [1] [1] (xyz) should
# be the same, i. e., there is a value associated with each coordinate.
if len (fi [i]) != len (m3 [1] [1] [0]) :
raise _Getv3Error, "mesh function F" + `i` + " is not vertex-centered."
verts = m3 [1] [0]
oldstart = chunk [0] [0]
oldfin = chunk [0] [1]
no_cells = oldfin - oldstart
if type (verts) != ListType : # Only one kind of cell in mesh
indices = ravel (verts [oldstart:oldfin])
else : # A list of possibly more than one kind
sizes = m3 [1] [2]
totals = m3 [1] [3]
for j in range (len (totals)) :
if oldfin <= totals [j] :
break
verts = verts [j]
if j > 0 :
start = oldstart - totals [j - 1]
fin = oldfin - totals [j - 1]
else :
start = oldstart
fin = oldfin
indices = ravel (verts [start:fin])
tc = shape (verts) [1]
# ZCM 2/4/97 the array of cell numbers must be relative
if tc == 8 : # hex cells
return [ reshape (take (fi [i], indices,axis=0), (no_cells, 2, 2, 2)),
arange (0, no_cells, dtype = Int), oldstart]
elif tc == 6 : # pyramids
return [ reshape (take (fi [i], indices,axis=0), (no_cells, 3, 2)),
arange (0, no_cells, dtype = Int), oldstart]
else : # tetrahedron or pyramid
return [ reshape (take (fi [i], indices,axis=0), (no_cells, tc)),
arange (0, no_cells, dtype = Int), oldstart]
_Getc3Error = "Getc3Error"
def getc3 (i, m3, chunk, *args) :
"""
getc3(i, m3, chunk)
or getc3(i, m3, clist, l, u, fsl, fsu, cells)
return cell values of the Ith function attached to 3D mesh M3
for cells in the specified CHUNK. The CHUNK may be a list of
cell indices, in which case getc3 returns a (dimsof(CHUNK))
list of vertex coordinates. CHUNK may also be a mesh-specific data
structure used in the slice3 routine, in which case getc3 may
return a (ni)x(nj)x(nk) array of vertex values. There is no
savings in the amount of data for such a CHUNK, but the gather
operation is cheaper than a general list of cell indices.
Use getc3 when writing colorng functions for slice3.
If CHUNK is a CLIST, the additional arguments L, U, FSL, and FSU
are vertex index lists which override the CLIST if the Ith attached
function is defined on mesh vertices. L and U are index lists into
the (dimsof(CLIST))x2x2x2 vertex value array, say vva, and FSL
and FSU are corresponding interpolation coefficients; the zone
centered value is computed as a weighted average of involving these
coefficients. The CELLS argument is required by histogram to do
the averaging. See the source code for details.
By default, this conversion (if necessary) is done by averaging
the eight vertex-centered values.
"""
if len (args) == 0 :
l = None
u = None
fsl = None
fsu = None
cells = None
elif len (args) == 5 :
l = args [0]
u = args [1]
fsl = args [2]
fsu = args [3]
cells = args [4]
else :
raise _Getc3Error, "getc3 requires either three or eight parameters."
return m3 [0] [2] (i, m3, chunk, l, u, fsl, fsu, cells)
def getc3_rect (i, m3, chunk, l, u, fsl, fsu, cells) :
"""
getc3_rect (i, m3, chunk, l, u, fsl, fsu, cells) does the job
for a regular rectangular mesh.
"""
fi = m3 [2]
m3 = m3 [1]
if ( i < 1 or i > len (fi)) :
raise _Getc3Error, "no such mesh function as F" + `i - 1`
dims = m3 [0]
if shape (fi [i - 1]) == dims :
# it is a cell-centered quantity
if len (shape (chunk)) != 1 :
c = chunk
# The difference here is that our arrays are 0-based, while
# yorick's are 1-based; and the last element in a range is not
# included in the result array.
return fi [i - 1] [c [0, 0] - 1:1 + c [1, 0],
c [0, 1] - 1:1 + c [1, 1] ,
c [0, 2] - 1:1 + c [1, 2]]
else :
[k, l. m] = dims
return reshape (take (ravel (fi [i - 1]), chunk,axis=0),
(len (chunk), k, l, m))
else :
# it is vertex-centered, so we take averages to get cell quantity
if len (shape (chunk)) != 1 :
c = chunk
# The difference here is that our arrays are 0-based, while
# yorick's are 1-based; and the last element in a range is not
# included in the result array.
return zcen_ (zcen_( zcen_ (
(fi [i - 1] [c [0, 0] - 1:1 + c [1, 0],
c [0, 1] - 1:1 + c [1, 1] ,
c [0, 2] - 1:1 + c [1, 2]]), 0), 1), 2)
else :
indices = to_corners3 (chunk, dims [1] + 1, dims [2] + 1)
no_cells = shape (indices) [0]
indices = ravel (indices)
corners = take (ravel (fi [i - 1]), indices,axis=0)
if l == None :
return 0.125 * sum (transpose (reshape (corners, (no_cells, 8))),axis=0)
else :
# interpolate corner values to get edge values
corners = (take (corners, l,axis=0) * fsu -
take (corners, u,axis=0) * fsl) / (fsu -fsl)
# average edge values (vertex values of polys) on each poly
return histogram (cells, corners) / histogram (cells)
def getc3_irreg (i, m3, chunk, l, u, fsl, fsu, cells) :
"""
Same thing as getc3_rect, i. e., returns the same type of
data structure, but from an irregular mesh.
m3 [1] is a 2-list; m3[1] [0] is an array whose ith element
is an array of coordinate indices for the ith cell,
or a list of up to four such arrays.
m3 [1] [1] is the 3 by nverts array of coordinates.
m3 [2] is a list of arrays of vertex-centered or cell-centered
data.
chunk may be a list, in which case chunk [0] is a 2-sequence
representing a range of cell indices; or it may be a one-dimensional
array, in which case it is a nonconsecutive set of cell indices.
It is guaranteed that all cells indexed by the chunk are the
same type.
"""
fi = m3 [2]
if i < 1 or i > len (fi) :
raise _Getc3Error, "no such mesh function as F" + `i - 1`
verts = m3 [1] [0]
if type (verts) == ListType :
sizes = m3 [1] [2]
totals = m3 [1] [3]
if type (verts) == ListType and totals [-1] == len (fi [i - 1]) or \
type (verts) != ListType and shape (verts) [0] == len (fi [i - 1]) :
# cell-centered case
if type (chunk) == ListType :
return fi [i - 1] [chunk [0] [0]:chunk [0] [1]]
elif type (chunk) == ArrayType and len (shape (chunk)) == 1 :
return take (fi [i - 1], chunk,axis=0)
else :
raise _Getc3Error, "chunk argument is incomprehensible."
if len (fi [i - 1]) != shape (m3 [1] [1]) [1] :
raise _Getc3Error, "F" + `i - 1` + " has the wrong size to be " \
"either zone-centered or node-centered."
# vertex-centered case
# First we need to pick up the vertex subscripts, which are
# also the fi [i - 1] subscripts.
if type (verts) != ListType :
if type (chunk) == ListType :
indices = verts [chunk [0] [0]:chunk [0] [1]]
elif type (chunk) == ArrayType and len (shape (chunk)) == 1 :
indices = take (verts, chunk,axis=0)
else :
raise _Getc3Error, "chunk argument is incomprehensible."
else :
# We have a list of vertex subscripts, each for a different
# type of cell; need to extract the correct list:
if type (chunk) == ListType :
start = chunk [0] [0]
fin = chunk [0] [1]
for j in range (len (totals)) :
if fin <= totals [j] :
break
verts = verts [j]
if j > 0 :
start = start - totals [j - 1]
fin = fin - totals [j - 1]
indices = verts [start:fin]
elif type (chunk) == ArrayType and len (shape (chunk)) == 1 :
for j in range (len (totals)) :
if chunk [-1] <= totals [j] :
break
verts = verts [j]
ch = chunk
if j > 0 :
ch = chunk - totals [j - 1]
indices = take (verts, ch,axis=0)
else :
raise _Getc3Error, "chunk argument is incomprehensible."
shp = shape (indices)
no_cells = shp [0]
indices = ravel (indices)
corners = take (fi [i - 1], indices,axis=0)
if l == None :
return (1. / shp [1]) * transpose ((sum (transpose (reshape (corners,
(no_cells, shp [1]))) [0:shp [1]],axis=0)))
else :
# interpolate corner values to get edge values
corners = (take (corners, l,axis=0) * fsu -
take (corners, u,axis=0) * fsl) / (fsu -fsl)
# average edge values (vertex values of polys) on each poly
return histogram (cells, corners) / histogram (cells)
_no_verts = array ( [4, 5, 6, 8])
_no_edges = array ( [6, 8, 9, 12])
# Lower and upper vertex subscripts for each edge
_lower_vert4 = array ( [0, 0, 0, 1, 2, 3], Int)
_lower_vert5 = array ( [0, 0, 0, 0, 1, 2, 3, 4], Int)
_lower_vert6 = array ( [0, 1, 0, 1, 2, 3, 0, 2, 4], Int)
_lower_vert8 = array ( [0, 1, 2, 3, 0, 1, 4, 5, 0, 2, 4, 6], Int)
_lower_vert = [_lower_vert4, _lower_vert5, _lower_vert6, _lower_vert8]
_upper_vert4 = array ( [1, 2, 3, 2, 3, 1], Int)
_upper_vert5 = array ( [1, 2, 3, 4, 2, 3, 4, 1], Int)
_upper_vert6 = array ( [4, 5, 2, 3, 4, 5, 1, 3, 5], Int)
_upper_vert8 = array ( [4, 5, 6, 7, 2, 3, 6, 7, 1, 3, 5, 7], Int)
_upper_vert = [_upper_vert4, _upper_vert5, _upper_vert6, _upper_vert8]
_node_edges8_s = array ( [ [1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0],
[0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0],
[0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0],
[1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0],
[0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0],
[0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1],
[0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1]], Int)
_node_edges8 = array ( [ [0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1],
[0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1],
[0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0],
[1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0],
[0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0],
[0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0],
[1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0]], Int)
_node_edges6_s = array ( [ [1, 0, 1, 0, 0, 0, 1, 0, 0],
[0, 1, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 1, 0, 0, 1, 0],
[0, 0, 0, 1, 0, 1, 0, 1, 0],
[1, 0, 0, 0, 1, 0, 0, 0, 1],
[0, 1, 0, 0, 0, 1, 0, 0, 1]], Int)
_node_edges6 = array ( [ [0, 1, 0, 0, 0, 1, 0, 0, 1],
[1, 0, 0, 0, 1, 0, 0, 0, 1],
[0, 0, 0, 1, 0, 1, 0, 1, 0],
[0, 0, 1, 0, 1, 0, 0, 1, 0],
[0, 1, 0, 1, 0, 0, 1, 0, 0],
[1, 0, 1, 0, 0, 0, 1, 0, 0]], Int)
_node_edges4_s = array ( [ [1, 1, 1, 0, 0, 0],
[1, 0, 0, 1, 0, 1],
[0, 1, 0, 1, 1, 0],
[0, 0, 1, 0, 1, 1]], Int)
_node_edges4 = array ( [ [0, 0, 1, 0, 1, 1],
[0, 1, 0, 1, 1, 0],
[1, 0, 0, 1, 0, 1],
[1, 1, 1, 0, 0, 0]], Int)
_node_edges5_s = array ( [ [1, 1, 1, 1, 0, 0, 0, 0],
[1, 0, 0, 0, 1, 0, 0, 1],
[0, 1, 0, 0, 1, 1, 0, 0],
[0, 0, 1, 0, 0, 1, 1, 0],
[0, 0, 0, 1, 0, 0, 1, 1]], Int)
_node_edges5 = array ( [ [0, 0, 0, 1, 0, 0, 1, 1],
[0, 0, 1, 0, 0, 1, 1, 0],
[0, 1, 0, 0, 1, 1, 0, 0],
[1, 0, 0, 0, 1, 0, 0, 1],
[1, 1, 1, 1, 0, 0, 0, 0]], Int)
_node_edges = [_node_edges4_s, _node_edges5_s, _node_edges6_s, _node_edges8_s]
_node_edges3 = [_node_edges4, _node_edges5, _node_edges6, _node_edges8]
def _construct3 (itype) :
global _node_edges
global _no_verts
global _no_edges
i = arange (1, 2**_no_verts [itype] - 1, dtype = Int)
if itype == 0 :
below = transpose (not_equal (array ( [bitwise_and (i, 8),
bitwise_and (i, 4),
bitwise_and (i, 2),
bitwise_and (i, 1)]), 0))
elif itype == 1 :
below = transpose (not_equal (array ( [bitwise_and (i, 16),
bitwise_and (i, 8),
bitwise_and (i, 4),
bitwise_and (i, 2),
bitwise_and (i, 1)]), 0))
elif itype == 2 :
below = transpose (not_equal (array ( [bitwise_and (i, 32),
bitwise_and (i, 16),
bitwise_and (i, 8),
bitwise_and (i, 4),
bitwise_and (i, 2),
bitwise_and (i, 1)]), 0))
elif itype == 3 :
below = transpose (not_equal (array ( [bitwise_and (i, 128),
bitwise_and (i, 64),
bitwise_and (i, 32),
bitwise_and (i, 16),
bitwise_and (i, 8),
bitwise_and (i, 4),
bitwise_and (i, 2),
bitwise_and (i, 1)]), 0))
# For some reason the node edges for a cell need to be in different order
# here than in slice3 to get the correct results. Hence _node_edges3.
mask = find_mask (below, _node_edges3 [itype])
return construct3 (mask, itype)
# ------------------------------------------------------------------------
_poly_permutations4 = _construct3 (0)
_poly_permutations5 = _construct3 (1)
_poly_permutations6 = _construct3 (2)
_poly_permutations8 = _construct3 (3)
_poly_permutations = [_poly_permutations4, _poly_permutations5,
_poly_permutations6, _poly_permutations8]
_ContourError = "ContourError"
# ------------------------------------------------------------------------
def plzcont (nverts, xyzverts, contours = 8, scale = "lin", clear = 1,
edges = 0, color = None, cmin = None, cmax = None,
zaxis_min = None, zaxis_max = None, split = 0) :
"""
plzcont (nverts, xyzverts, contours = 8, scale = "lin", clear = 1,
edges = 0, color = None, cmin = None, cmax = None, split = 0
zaxis_min = None, zaxis_max = None, )
Plot filled z contours on the specified surface. NVERTS and
XYZVERTS arrays specify the polygons for the surface being
drawn. CONTOURS can be one of the following:
N, an integer: Plot N contours (therefore, N+1 colored
components of the surface)
CVALS, a vector of floats: draw the contours at the
specified levels.
SCALE can be "lin", "log", or "normal" specifying the
contour scale. (Only applicable if contours = N, of course).
If CLEAR = 1, clear the display list first.
If EDGES = 1, plot the edges.
The algorithm is to apply slice2x repeatedly to the surface.
If color == None, then bytscl the palette into N + 1 colors
and send each of the slices to pl3tree with the appropriate color.
If color == "bg", will plot only the edges.
If CMIN is given, use it instead of the minimum z actually
being plotted in the computation of contour levels. If CMAX is given,
use it instead of the maximum z actually being plotted in the
computation of contour levels. This is done so that a component
of a larger graph will have the same colors at the same levels
as every other component, rather than its levels being based
on its own max and min, which may lie inside those of the
rest of the graph.
ZAXIS_MIN and ZAXIS_MAX represent axis limits on z as expressed
by the user. If present, ZAXIS_MIN will inhibit plotting of all
lesser z values, and ZAXIS_MAX will inhibit the plotting of all
greater z values.
"""
# 1. Get contour colors
if type (contours) == IntType :
n = contours
if cmin != None :
vcmin = cmin
minz = min (xyzverts [:, 2])
else :
vcmin = min (xyzverts [:, 2])
minz = vcmin
if cmax != None :
vcmax = cmax
maxz = max (xyzverts [:, 2])
else :
vcmax = max (xyzverts [:, 2])
maxz = vcmax
if scale == "lin" :
vc = vcmin + arange (1, n + 1, dtype = Float) * \
(vcmax - vcmin) / (n + 1)
elif scale == "log" :
vc = vcmin + exp (arange (1, n + 1, dtype = Float) * \
log (vcmax - vcmin) / (n + 1))
elif scale == "normal" :
zlin = xyzverts [:, 2]
lzlin = len (zlin)
zbar = add.reduce (zlin) / lzlin
zs = sqrt ( (add.reduce (zlin ** 2) - lzlin * zbar ** 2) /
(lzlin - 1))
z1 = zbar - 2. * zs
z2 = zbar + 2. * zs
diff = (z2 - z1) / (n - 1)
vc = z1 + arange (n) * diff
else :
raise _ContourError, "Incomprehensible scale parameter."
elif type (contours) == ArrayType and contours.dtype == Float :
n = len (contours)
vc = sort (contours)
else :
raise _ContourError, "Incorrect contour specification."
if split == 0 :
colors = (arange (n + 1, dtype = Float) * (199. / n)).astype ('B')
else :
colors = (arange (n + 1, dtype = Float) * (99. / n)).astype ('B')
# 2. Loop through slice2x calls
nv = array (nverts, copy = 1)
xyzv = array (xyzverts, copy = 1)
if clear == 1 :
clear3 ( ) # Clear any previous plot or we're in trouble
# find imin--contours below this number need not be computed,
# and imax--contours at this level and above need not be computed.
imin = imax = 0
for i in range (n) :
if vc [i] <= minz :
imin = i + 1
if vc [i] >= maxz :
imax = i
break
if i == n - 1 :
imax = n
# now make sure that the minimum and maximum contour levels computed
# are not outside the axis limits.
if zaxis_min != None and zaxis_min > vc [imin] :
for i in range (imin, imax) :
if i + 1 < imax and zaxis_min > vc [i + 1] :
imin = i + 1
else :
break
vc [imin] = zaxis_min
if zaxis_max != None and zaxis_max < vc [imax - 1] :
for i in range (imax - imin) :
if imax - 2 >= imin and zaxis_max < vc [imax - 2] :
imax = imax - 1
else :
break
vc [imax - 1] = zaxis_max
for i in range (imin, imax) :
[nv, xyzv, d1, nvb, xyzvb, d2] = \
slice2x (array ( [0., 0., 1., vc [i]], Float) , nv, xyzv, None)
if i == imin and zaxis_min != None and zaxis_min == vc [i]:
# Don't send the "back" surface if it's below zaxis_min.
continue
else:
if color == None :
pl3tree (nvb, xyzvb, (ones (len (nvb)) * colors [i]).astype ('B'),
split = 0, edges = edges)
else :
# N. B. Force edges to be on, otherwise the graph is empty.
pl3tree (nvb, xyzvb, "bg", split = 0, edges = 1)
if zaxis_max == None or vc [imax - 1] < zaxis_max:
# send "front" surface if it's not beyond zaxis_max
if color == None :
pl3tree (nv, xyzv, (ones (len (nv)) * colors [i]).astype ('B'),
split = 0, edges = edges)
else :
pl3tree (nv, xyzv, "bg", split = 0, edges = 1)
def pl4cont (nverts, xyzverts, values, contours = 8, scale = "lin", clear = 1,
edges = 0, color = None, cmin = None, cmax = None,
caxis_min = None, caxis_max = None, split = 0) :
"""
pl4cont (nverts, xyzverts, values, contours = 8, scale = "lin", clear = 1,
edges = 0, color = None, cmin = None, cmax = None,
caxis_min = None, caxis_max = None, split = 0)
Plot filled z contours on the specified surface. VALUES is
a node-centered array the same length as SUM (NVERTS) whose
contours will be drawn. NVERTS and
XYZVERTS arrays specify the polygons for the surface being
drawn. CONTOURS can be one of the following:
N, an integer: Plot N contours (therefore, N+1 colored
components of the surface)
CVALS, a vector of floats: draw the contours at the
specified levels.
SCALE can be "lin", "log", or "normal" specifying the
contour scale. (Only applicable if contours = N, of course).
If CLEAR == 1, clear the display list first.
If EDGES == 1, plot the edges.
The algorithm is to apply slice2x repeatedly to the surface.
If color == None, then bytscl the palette into N + 1 colors
and send each of the slices to pl3tree with the appropriate color.
If color == "bg", will plot only the edges.
If CMIN is given, use it instead of the minimum c actually
being plotted in the computation of contour levels. If CMAX is given,
use it instead of the maximum c actually being plotted in the
computation of contour levels. This is done so that a component
of a larger graph will have the same colors at the same levels
as every other component, rather than its levels being based
on its own max and min, which may lie inside those of the
rest of the graph.
CAXIS_MIN and CAXIS_MAX represent axis limits on c as expressed
by the user. If present, CAXIS_MIN will inhibit plotting of all
lesser c values, and CAXIS_MAX will inhibit the plotting of all
greater c values.
"""
# 1. Get contour colors
if type (contours) == IntType :
n = contours
if cmin != None :
vcmin = cmin
minz = min (values)
else :
vcmin = min (values)
minz = vcmin
if cmax != None :
vcmax = cmax
maxz = max (values)
else :
vcmax = max (values)
maxz = vcmax
if scale == "lin" :
vc = vcmin + arange (1, n + 1, \
dtype = Float) * \
(vcmax - vcmin) / (n + 1)
elif scale == "log" :
vc = vcmin + exp (arange (1, n + 1, \
dtype = Float) * \
log (vcmax - vcmin) / (n + 1))
elif scale == "normal" :
zbar = add.reduce (values) / lzlin
zs = sqrt ( (add.reduce (values ** 2) - lzlin * zbar ** 2) /
(lzlin - 1))
z1 = zbar - 2. * zs
z2 = zbar + 2. * zs
diff = (z2 - z1) / (n - 1)
vc = z1 + arange (n) * diff
else :
raise _ContourError, "Incomprehensible scale parameter."
elif type (contours) == ArrayType and contours.dtype == Float :
n = len (contours)
vc = sort (contours)
else :
raise _ContourError, "Incorrect contour specification."
if split == 0 :
colors = (arange (n + 1, dtype = Float) * (199. / n)).astype ('B')
else :
colors = (arange (n + 1, dtype = Float) * (99. / n)).astype ('B')
# 2. Loop through slice2x calls
nv = array (nverts, copy = 1)
xyzv = array (xyzverts, copy = 1)
vals = array (values, copy = 1)
if clear == 1 :
clear3 ( ) # Clear any previous plot or we're in trouble
# find imin--contours below this number need not be computed,
# and imax--contours at this level and above need not be computed.
imin = imax = 0
for i in range (n) :
if vc [i] <= minz :
imin = i + 1
if vc [i] >= maxz :
imax = i
break
if i == n - 1 :
imax = n
# now make sure that the minimum and maximum contour levels computed
# are not outside the axis limits.
if caxis_min != None and caxis_min > vc [imin] :
for i in range (imin, imax) :
if i + 1 < imax and caxis_min > vc [i + 1] :
imin = i + 1
else :
break
vc [imin] = caxis_min
if caxis_max != None and caxis_max < vc [imax - 1] :
for i in range (imax - imin) :
if imax - 2 >= imin and caxis_max < vc [imax - 2] :
imax = imax - 1
else :
break
vc [imax - 1] = caxis_max
for i in range (n) :
if vc [i] <= minz :
continue
if vc [i] >= maxz :
break
[nv, xyzv, vals, nvb, xyzvb, d2] = \
slice2x (vc [i], nv, xyzv, vals)
if i == imin and caxis_min != None and caxis_min == vc [i]:
# Don't send the "back" surface if it's below caxis_min.
continue
else:
if color == None :
pl3tree (nvb, xyzvb, (ones (len (nvb)) * colors [i]).astype ('B'),
split = 0, edges = edges)
else :
# N. B. Force edges to be on, otherwise the graph is empty.
pl3tree (nvb, xyzvb, "bg", split = 0, edges = 1)
if caxis_max == None or vc [imax - 1] < caxis_max:
# send "front" surface if it's not beyond caxis_max
if color == None :
pl3tree (nv, xyzv, (ones (len (nv)) * colors [i]).astype ('B'),
split = 0, edges = edges)
else :
pl3tree (nv, xyzv, "bg", split = 0, edges = 1)
def slice2x (plane, nverts, xyzverts, values = None) :
"""
slice2x (plane, nverts, xyzverts, values)
Slice a polygon list, retaining only those polygons or
parts of polygons on the positive side of PLANE, that is,
the side where xyz(+)*PLANE(+:1:3)-PLANE(4) > 0.0.
The NVERTS, VALUES, and XYZVERTS arrays have the meanings of
the return values from the slice3 function.
Python returns a sextuple
[nverts, xyzverts, values, nvertb, xyzvertb, valueb]
with None in the place of missing or None input arguments.
slice2_precision= precision
Controls how slice2 (or slice2x) handles points very close to
the slicing plane. PRECISION should be a positive number or zero.
Zero PRECISION means to clip exactly to the plane, with points
exactly on the plane acting as if they were slightly on the side
the normal points toward. Positive PRECISION means that edges
are clipped to parallel planes a distance PRECISION on either
side of the given plane. (Polygons lying entirely between these
planes are completely discarded.)
Default value is 0.0.
"""
# Note (ZCM 2/24/97) Reomved _slice2x as a global and added
# it as a final argument to slice2.
retval = slice2 (plane, nverts, xyzverts, values, 1)
retval = retval + [None] * (6 - len (retval))
return retval
_Pl3surfError = "Pl3surfError"
def pl3surf(nverts, xyzverts = None, values = None, cmin = None, cmax = None,
lim = None, edges = 0) :
"""
pl3surf (nverts, xyzverts)
or pl3surf (nverts, xyzverts, values)
Perform simple 3D rendering of an object created by slice3
(possibly followed by slice2). NVERTS and XYZVERTS are polygon
lists as returned by slice3, so XYZVERTS is sum(NVERTS,axis=0)-by-3,
where NVERTS is a list of the number of vertices in each polygon.
If present, the VALUES should have the same length as NVERTS;
they are used to color the polygon. If VALUES is not specified,
the 3D lighting calculation set up using the light3 function
will be carried out. Keywords cmin= and cmax= as for plf, pli,
or plfp are also accepted. (If you do not supply VALUES, you
probably want to use the ambient= keyword to light3 instead of
cmin= here, but cmax= may still be useful.)
"""
_draw3 = get_draw3_ ( )
if type (nverts) == ListType :
list = nverts
nverts = list [0]
xyzverts = array (list [1], copy = 1)
values = list [2]
cmin = list [3]
cmax = list [4]
edges = list [6]
## Scale xyzverts to avoid loss of accuracy
minx = min (xyzverts [:, 0])
maxx = max (xyzverts [:, 0])
miny = min (xyzverts [:, 1])
maxy = max (xyzverts [:, 1])
minz = min (xyzverts [:, 2])
maxz = max (xyzverts [:, 2])
xyzverts [:, 0] = (xyzverts [:, 0] - minx) / (maxx - minx)
xyzverts [:, 1] = (xyzverts [:, 1] - miny) / (maxy - miny)
xyzverts [:, 2] = (xyzverts [:, 2] - minz) / (maxz - minz)
xyztmp = get3_xy (xyzverts, 1)
x = xyztmp [:, 0]
y = xyztmp [:, 1]
z = xyztmp [:, 2]
if values == None :
# xyzverts [:, 0] = x
# xyzverts [:, 1] = y
# xyzverts [:, 2] = z
values = get3_light (xyztmp, nverts)
[list, vlist] = sort3d (z, nverts)
nverts = take (nverts, list,axis=0)
values = take (values, list,axis=0)
x = take (x, vlist,axis=0)
y = take (y, vlist,axis=0)
_square = get_square_ ( )
[_xfactor, _yfactor] = get_factors_ ()
xmax = max (x)
xmin = min (x)
ymax = max (y)
ymin = min (y)
xdif = xmax - xmin
ydif = ymax - ymin
if _xfactor != 1. :
xmax = xmax + (_xfactor - 1.) * xdif /2.
xmin = xmin - (_xfactor - 1.) * xdif /2.
if _yfactor != 1. :
ymax = ymax + (_yfactor - 1.) * ydif /2.
ymin = ymin - (_yfactor - 1.) * ydif /2.
if _square :
xdif = xmax - xmin
ydif = ymax - ymin
if xdif > ydif :
dif = (xdif - ydif) / 2.
ymin = ymin - dif
ymax = ymax + dif
elif ydif > xdif :
dif = (ydif - xdif) / 2.
xmin = xmin - dif
xmax = xmax + dif
plfp (values, y, x, nverts, cmin = cmin, cmax = cmax, legend = "",
edges = edges)
return [xmin, xmax, ymin, ymax]
nverts = array (nverts, Int)
xyzverts = array (xyzverts, Float )
if shape (xyzverts) [0] != sum (nverts,axis=0) or sum (less (nverts, 3),axis=0) or \
nverts.dtype != Int :
raise _Pl3surfError, "illegal or inconsistent polygon list"
if values != None and len (values) != len (nverts) :
raise _Pl3surfError, "illegal or inconsistent polygon color values"
if values != None :
values = array (values, Float )
clear3 ( )
set3_object ( pl3surf, [nverts, xyzverts, values, cmin, cmax, lim, edges])
if (_draw3) :
# Plot the current list if _draw3 has been set.
call_idler ( )
if lim :
tmp = get3_xy (xyzverts, 1)
return max ( max (abs (tmp [:,0:2])))
else :
return None
# ------------------------------------------------------------------------
_Pl3treeError = "Pl3treeError"
def pl3tree (nverts, xyzverts = None, values = None, plane = None,
cmin = None, cmax = None, split = 1, edges = 0) :
"""
pl3tree (nverts, xyzverts = None, values = None, plane = None,
cmin = None, cmax = None)
Add the polygon list specified by NVERTS (number of vertices in
each polygon) and XYZVERTS (3-by-sum(NVERTS,axis=0) vertex coordinates)
to the currently displayed b-tree. If VALUES is specified, it
must have the same dimension as NVERTS, and represents the color
of each polygon. If VALUES is not specified, the polygons
are assumed to form an isosurface which will be shaded by the
current 3D lighting model; the isosurfaces are at the leaves of
the b-tree, sliced by all of the planes. If PLANE is specified,
the XYZVERTS must all lie in that plane, and that plane becomes
a new slicing plane in the b-tree.
Each leaf of the b-tree consists of a set of sliced isosurfaces.
A node of the b-tree consists of some polygons in one of the
planes, a b-tree or leaf entirely on one side of that plane, and
a b-tree or leaf on the other side. The first plane you add
becomes the root node, slicing any existing leaf in half. When
you add an isosurface, it propagates down the tree, getting
sliced at each node, until its pieces reach the existing leaves,
to which they are added. When you add a plane, it also propagates
down the tree, getting sliced at each node, until its pieces
reach the leaves, which it slices, becoming the nodes closest to
the leaves.
tree is a 4-element list like this:
[plane, back_tree, inplane_leaf, front_tree]
plane= tree [0] is None if this is just a leaf
in which case, only inplane_leaf is not None
back_tree= tree [1] is the part behind plane
inplane_leaf= tree [2] is the part in the plane itself
front_tree= tree [3] is the part in front of plane
This structure is relatively easy to plot, since from any
viewpoint, a node can always be plotted in the order from one
side, then the plane, then the other side.
This routine assumes a "split palette"; the colors for the
VALUES will be scaled to fit from color 0 to color 99, while
the colors from the shading calculation will be scaled to fit
from color 100 to color 199. (If VALUES is specified as a char
array, however, it will be used without scaling.)
You may specifiy a cmin= or cmax= keyword to affect the
scaling; cmin is ignored if VALUES is not specified (use the
ambient= keyword from light3 for that case).
"""
# (ZCM 4/23/97) Add the split keyword. This will determine
# whether or not to split the palette (half to the isosurfaces
# for shading and the other half to plane sections for contouring).
# (ZCM 7/17/97) Add a calculation of the maximum and minimum
# of everything that is put into the tree. This cures distortion
# caused by loss of accuracy in orientation calculations.
# What is now put on the display list is pl3tree and [tree, minmax];
# both components are passed to _pl3tree to normalize results.
# avoid overhead of local variables for _pl3tree and _pl3leaf
# -- I don't know if this is such a big deal
_draw3 = get_draw3_ ()
if type (nverts) == ListType :
_nverts = []
for i in range (len (nverts)) :
_nverts.append (nverts [i])
return _pl3tree (_nverts [0], nverts [1])
# We need copies of everything, or else arrays get clobbered.
nverts = array (nverts, Int)
xyzverts = array (xyzverts, Float )
if values == "background" :
values = "bg"
elif values != None and values != "bg" :
values = array (values, values.dtype)
if plane != None :
plane = plane.astype (Float)
if shape (xyzverts) [0] != sum (nverts,axis=0) or sum (less (nverts, 3),axis=0) > 0 or \
type (nverts [0]) != IntType :
print "Dim1 of xyzverts ", shape (xyzverts) [0], " sum (nverts,axis=0) ",\
sum (nverts,axis=0), " sum (less (nverts, 3),axis=0) ", sum (less (nverts, 3),axis=0), \
" type (nverts [0]) ", `type (nverts [0])`
raise _Pl3treeError, "illegal or inconsistent polygon list."
if type (values) == ArrayType and len (values) != len (nverts) and \
len (values) != sum (nverts,axis=0) :
raise _Pl3treeError, "illegal or inconsistent polygon color values"
if type (values) == ArrayType and len (values) == sum (nverts,axis=0) :
# We have vertex-centered values, which for Gist must be
# averaged over each cell
list = zeros (sum (nverts,axis=0), Int)
array_set (list, cumsum (nverts,axis=0) [0:-1], ones (len (nverts), Int))
tpc = values.dtype
values = (histogram (cumsum (list,axis=0), values) / nverts).astype (tpc)
if plane != None :
if (len (shape (plane)) != 1 or shape (plane) [0] != 4) :
raise _Pl3treeError, "illegal plane format, try plane3 function"
# Note: a leaf is going to be a list of lists.
leaf = [ [nverts, xyzverts, values, cmin, cmax, split, edges]]
## max and min of current leaf
minmax = array ( [min (xyzverts [:, 0]), max (xyzverts [:, 0]),
min (xyzverts [:, 1]), max (xyzverts [:, 1]),
min (xyzverts [:, 2]), max (xyzverts [:, 2])])
# retrieve current b-tree (if any) from 3D display list
_draw3_list = get_draw3_list_ ()
_draw3_n = get_draw3_n_ ()
try :
tree = _draw3_list [_draw3_n:]
except :
tree = []
if tree == [] or tree [0] != pl3tree :
tree = [plane, [], leaf, []]
else :
oldminmax = tree [1] [1]
tree = tree [1] [0]
## Find new minmax for whole tree
minmax = array ( [min (minmax [0], oldminmax [0]),
max (minmax [1], oldminmax [1]),
min (minmax [2], oldminmax [2]),
max (minmax [3], oldminmax [3]),
min (minmax [4], oldminmax [4]),
max (minmax [5], oldminmax [5])])
_pl3tree_add (leaf, plane, tree)
set_multiple_components (1)
tmp = has_multiple_components ()
clear3 ()
set_multiple_components (tmp)
# plist (tree)
set3_object (pl3tree, [tree, minmax])
if (_draw3) :
## Plot the current list
call_idler ( )
palette_dict = {
"earth.gp" :
[array ([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 3, 4, 5, 5, 6, 7, 8,
8, 9, 10, 11, 11, 12, 13, 14, 15, 15, 16, 17, 18, 18, 19,
20, 21, 22, 22, 23, 24, 25, 26, 26, 27, 28, 29, 30, 31, 31,
32, 33, 34, 35, 36, 36, 37, 38, 39, 40, 41, 41, 42, 43, 44,
45, 46, 47, 48, 48, 48, 49, 49, 50, 50, 51, 51, 52, 52, 53,
53, 54, 54, 55, 55, 56, 56, 57, 57, 58, 58, 59, 59, 60, 61,
61, 62, 62, 63, 63, 64, 64, 65, 65, 66, 67, 67, 68, 68, 69,
69, 70, 71, 73, 76, 78, 81, 83, 86, 88, 91, 94, 96, 99, 101,
104, 106, 109, 111, 114, 117, 119, 121, 122, 124, 126, 128,
129, 131, 133, 135, 136, 138, 140, 141, 143, 145, 147, 149,
150, 152, 154, 156, 157, 159, 161, 163, 165, 166, 168, 170,
172, 174, 175, 177, 179, 181, 183, 183, 184, 184, 185, 185,
186, 186, 187, 187, 187, 188, 188, 189, 189, 190, 190, 190,
191, 191, 192, 192, 193, 195, 196, 197, 198, 199, 201, 202,
203, 204, 205, 207, 208, 209, 210, 211, 213, 214, 215, 216,
217, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 231,
232, 233, 234, 235, 237, 238, 239, 240, 241, 243, 244, 245,
246, 247, 249, 250, 251, 252, 253, 255], 'B'),
array ( [0, 0, 0, 0, 0, 0, 0, 0, 3, 6, 8, 11, 13, 16, 18, 21, 23, 26,
28, 31, 33, 36, 38, 41, 43, 45, 48, 50, 52, 55, 57, 59, 61,
64, 66, 68, 70, 72, 74, 77, 79, 81, 83, 85, 87, 89, 91, 93,
95, 97, 99, 100, 102, 104, 106, 108, 109, 111, 113, 115,
116, 118, 120, 121, 123, 125, 126, 128, 128, 129, 129, 130,
131, 131, 132, 133, 133, 134, 134, 135, 136, 136, 137, 138,
138, 139, 140, 140, 141, 141, 142, 143, 143, 144, 145, 145,
146, 146, 147, 148, 148, 149, 150, 150, 151, 151, 152, 153,
153, 154, 155, 155, 156, 156, 157, 158, 158, 159, 160, 160,
161, 161, 162, 163, 163, 164, 165, 165, 166, 166, 167, 168,
168, 168, 169, 169, 170, 170, 171, 171, 172, 172, 172, 173,
173, 174, 174, 175, 175, 175, 176, 176, 177, 177, 178, 178,
179, 179, 179, 180, 180, 181, 181, 182, 182, 183, 183, 182,
181, 181, 180, 179, 178, 177, 176, 175, 174, 173, 172, 171,
170, 169, 168, 167, 166, 165, 164, 163, 163, 164, 164, 165,
165, 166, 167, 167, 168, 169, 170, 171, 172, 173, 174, 175,
176, 177, 178, 179, 181, 182, 184, 185, 187, 188, 190, 192,
194, 196, 198, 200, 202, 204, 206, 208, 211, 213, 215, 218,
221, 223, 226, 229, 232, 235, 238, 241, 244, 248, 251, 255],
'B'),
array ( [0, 46, 58, 69, 81, 92, 104, 116, 116, 116, 116, 116, 117,
117, 117, 117, 117, 118, 118, 118, 118, 118, 119, 119, 119,
119, 119, 120, 120, 120, 120, 120, 121, 121, 121, 121, 121,
122, 122, 122, 122, 122, 123, 123, 123, 123, 123, 124, 124,
124, 124, 124, 125, 125, 125, 125, 125, 126, 126, 126, 126,
126, 127, 127, 127, 127, 127, 128, 126, 125, 124, 123, 122,
120, 119, 118, 117, 115, 114, 113, 111, 110, 109, 108, 106,
105, 104, 102, 101, 100, 98, 97, 96, 94, 93, 92, 90, 89, 88,
86, 85, 84, 82, 81, 80, 78, 77, 76, 74, 73, 71, 70, 71, 72,
72, 73, 73, 74, 75, 75, 76, 76, 77, 77, 78, 79, 79, 80, 80,
81, 82, 82, 82, 83, 83, 83, 84, 84, 84, 85, 85, 85, 86, 86,
86, 87, 87, 87, 88, 88, 88, 89, 89, 89, 90, 90, 90, 91, 91,
91, 92, 92, 92, 93, 93, 93, 94, 94, 94, 95, 95, 95, 96, 96,
97, 97, 97, 98, 98, 98, 99, 99, 99, 100, 100, 100, 101, 101,
104, 106, 108, 111, 113, 116, 118, 121, 123, 126, 129, 131,
134, 137, 139, 142, 145, 148, 150, 153, 156, 159, 162, 165,
168, 170, 173, 176, 179, 182, 185, 189, 192, 195, 198, 201,
204, 207, 211, 214, 217, 220, 224, 227, 230, 234, 237, 241,
244, 248, 251, 255] , 'B')],
"gray.gp" : [
array ( [
0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65,
66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97,
98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 110,
111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123,
124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135,
137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161,
162, 163, 164, 165, 166, 167, 169, 170, 171, 172, 173, 174,
175, 176, 177, 178, 179, 180, 181, 182, 183, 185, 186, 187,
188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199,
201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 217, 218, 219, 220, 221, 222, 223, 224, 225,
226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238,
239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 250, 251,
252, 253, 254, 255
] , 'B'),
array ( [
0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65,
66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97,
98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 110,
111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123,
124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135,
137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161,
162, 163, 164, 165, 166, 167, 169, 170, 171, 172, 173, 174,
175, 176, 177, 178, 179, 180, 181, 182, 183, 185, 186, 187,
188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199,
201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 217, 218, 219, 220, 221, 222, 223, 224, 225,
226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238,
239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 250, 251,
252, 253, 254, 255
] , 'B'),
array ( [
0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65,
66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97,
98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 110,
111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123,
124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135,
137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161,
162, 163, 164, 165, 166, 167, 169, 170, 171, 172, 173, 174,
175, 176, 177, 178, 179, 180, 181, 182, 183, 185, 186, 187,
188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199,
201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 217, 218, 219, 220, 221, 222, 223, 224, 225,
226, 227, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238,
239, 240, 241, 242, 243, 244, 245, 246, 247, 249, 250, 251,
252, 253, 254, 255
] , 'B')
],
"heat.gp" : [
array ( [
0, 1, 2, 4, 5, 7, 8, 10, 11, 13, 15, 17, 18, 20, 21, 23, 24,
26, 27, 28, 30, 31, 33, 34, 36, 37, 39, 40, 42, 43, 46, 47,
49, 50, 52, 53, 55, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69,
70, 72, 73, 76, 78, 79, 81, 82, 84, 85, 86, 88, 89, 92, 94,
95, 97, 98, 99, 101, 102, 104, 105, 108, 110, 111, 113, 114,
115, 117, 118, 120, 121, 123, 124, 126, 127, 128, 130, 131,
133, 134, 136, 139, 140, 141, 143, 144, 146, 147, 149, 150,
152, 153, 155, 156, 157, 159, 160, 162, 163, 165, 166, 169,
170, 172, 173, 175, 176, 178, 179, 181, 182, 185, 186, 188,
189, 191, 192, 194, 195, 197, 198, 201, 202, 204, 205, 207,
208, 210, 211, 212, 214, 215, 217, 218, 220, 221, 223, 224,
226, 227, 228, 231, 233, 234, 236, 237, 239, 240, 241, 243,
244, 246, 247, 249, 250, 252, 253, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255
] , 'B'),
array ( [
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 5, 7, 9, 11,
15, 17, 18, 20, 22, 24, 26, 28, 30, 32, 35, 37, 39, 41, 43,
45, 47, 49, 51, 52, 54, 56, 58, 60, 62, 64, 66, 68, 69, 71,
75, 77, 79, 81, 83, 85, 86, 88, 90, 92, 94, 96, 98, 100,
102, 103, 105, 107, 109, 111, 115, 117, 119, 120, 122, 124,
126, 128, 130, 132, 136, 137, 139, 141, 143, 145, 147, 149,
151, 153, 156, 158, 160, 162, 164, 166, 168, 170, 171, 173,
175, 177, 179, 181, 183, 185, 187, 188, 190, 192, 196, 198,
200, 202, 204, 205, 207, 209, 211, 213, 215, 217, 219, 221,
222, 224, 226, 228, 230, 232, 236, 238, 239, 241, 243, 245,
247, 249, 251, 253
] , 'B'),
array ( [
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 51, 54, 58, 62, 66,
70, 74, 78, 82, 86, 90, 94, 98, 102, 105, 109, 113, 117,
121, 125, 133, 137, 141, 145, 149, 153, 156, 160, 164, 168,
172, 176, 180, 184, 188, 192, 196, 200, 204, 207, 215, 219,
223, 227, 231, 235, 239, 243, 247, 251
] , 'B')
],
"rainbow.gp" : [
array ( [
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 245, 240, 235, 229, 224, 219, 213,
208, 202, 197, 192, 186, 181, 175, 170, 159, 154, 149, 143,
138, 132, 127, 122, 116, 111, 106, 100, 95, 89, 84, 73, 68,
63, 57, 52, 46, 41, 36, 30, 25, 19, 14, 9, 3, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 2, 7, 18, 24, 29, 34, 40, 45, 50, 56, 61, 67,
72, 77, 83, 88, 93, 104, 110, 115, 120, 126, 131, 136, 142,
147, 153, 158, 163, 169, 174, 180, 190, 196, 201, 206, 212,
217, 223, 228, 233, 239, 244, 249, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255
] , 'B'),
array ( [
0, 0, 0, 0, 0, 0, 0, 0, 5, 11, 16, 22, 27, 32, 38, 43, 48,
54, 59, 65, 70, 75, 81, 91, 97, 102, 108, 113, 118, 124,
129, 135, 140, 145, 151, 156, 161, 167, 178, 183, 188, 194,
199, 204, 210, 215, 221, 226, 231, 237, 242, 247, 253, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 250, 239, 234, 228, 223, 218, 212, 207,
201, 196, 191, 185, 180, 174, 169, 164, 153, 148, 142, 137,
131, 126, 121, 115, 110, 105, 99, 94, 88, 83, 78, 67, 62,
56, 51, 45, 40, 35, 29, 24, 18, 13, 8, 2, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0
] , 'B'),
array ( [
42, 36, 31, 26, 20, 15, 10, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
12, 17, 23, 28, 33, 39, 44, 49, 55, 60, 66, 71, 76, 82, 87,
98, 103, 109, 114, 119, 125, 130, 135, 141, 146, 152, 157,
162, 168, 173, 184, 189, 195, 200, 205, 211, 216, 222, 227,
232, 238, 243, 248, 254, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 254, 249, 243,
233, 227, 222, 217, 211, 206, 201
] , 'B')
],
"stern.gp" : [
array ( [
0, 18, 36, 54, 72, 90, 108, 127, 145, 163, 199, 217, 235,
254, 249, 244, 239, 234, 229, 223, 218, 213, 208, 203, 197,
192, 187, 182, 177, 172, 161, 156, 151, 146, 140, 135, 130,
125, 120, 115, 109, 104, 99, 94, 89, 83, 78, 73, 68, 63, 52,
47, 42, 37, 32, 26, 21, 16, 11, 6, 64, 65, 66, 67, 68, 69,
70, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,
113, 114, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125,
126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 139,
140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151,
152, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176,
177, 178, 179, 181, 182, 183, 184, 185, 186, 187, 188, 189,
190, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 203,
204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215,
216, 217, 218, 219, 220, 221, 222, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240,
241, 242, 243, 245, 246, 247, 248, 249, 250, 251, 252, 253,
254
] , 'B'),
array ( [
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66,
67, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82,
83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98,
99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110,
111, 112, 113, 114, 115, 117, 118, 119, 120, 121, 122, 123,
124, 125, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136,
137, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149,
150, 151, 152, 153, 154, 155, 156, 157, 158, 160, 161, 162,
163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174,
175, 176, 177, 178, 179, 181, 182, 183, 184, 185, 186, 187,
188, 189, 190, 192, 193, 194, 195, 196, 197, 198, 199, 200,
201, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213,
214, 215, 216, 217, 218, 219, 220, 221, 222, 224, 225, 226,
227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238,
239, 240, 241, 242, 243, 245, 246, 247, 248, 249, 250, 251,
252, 253, 254
] , 'B'),
array ( [
0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 21, 23, 25, 27, 29, 31,
33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 63,
65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93,
95, 97, 99, 101, 105, 107, 109, 111, 113, 115, 117, 119,
121, 123, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145,
149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171,
173, 175, 177, 179, 181, 183, 185, 187, 191, 193, 195, 197,
199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221,
223, 225, 227, 229, 233, 235, 237, 239, 241, 243, 245, 247,
249, 251, 255, 251, 247, 243, 238, 234, 230, 226, 221, 217,
209, 204, 200, 196, 192, 187, 183, 179, 175, 170, 166, 162,
158, 153, 149, 145, 141, 136, 132, 128, 119, 115, 111, 107,
102, 98, 94, 90, 85, 81, 77, 73, 68, 64, 60, 56, 51, 47, 43,
39, 30, 26, 22, 17, 13, 9, 5, 0, 3, 7, 15, 19, 22, 26, 30,
34, 38, 41, 45, 49, 57, 60, 64, 68, 72, 76, 79, 83, 87, 91,
95, 98, 102, 106, 110, 114, 117, 121, 125, 129, 137, 140,
144, 148, 152, 156, 159, 163, 167, 171, 175, 178, 182, 186,
190, 194, 197, 201, 205, 209, 216, 220, 224, 228, 232, 235,
239, 243, 247, 251
] , 'B')
],
"yarg.gp" : [
array ( [
255, 254, 253, 252, 251, 250, 249, 248, 246, 245, 244, 243,
242, 241, 240, 239, 238, 237, 236, 235, 234, 233, 232, 230,
229, 228, 227, 226, 225, 224, 223, 222, 221, 220, 219, 218,
217, 216, 214, 213, 212, 211, 210, 209, 208, 207, 206, 205,
204, 203, 202, 201, 200, 198, 197, 196, 195, 194, 193, 192,
191, 190, 189, 188, 187, 186, 185, 184, 182, 181, 180, 179,
178, 177, 176, 175, 174, 173, 172, 171, 170, 169, 168, 166,
165, 164, 163, 162, 161, 160, 159, 158, 157, 156, 155, 154,
153, 152, 150, 149, 148, 147, 146, 145, 144, 143, 142, 141,
140, 139, 138, 137, 136, 134, 133, 132, 131, 130, 129, 128,
127, 126, 125, 124, 123, 122, 121, 120, 118, 117, 116, 115,
114, 113, 112, 111, 110, 109, 108, 107, 106, 105, 104, 102,
101, 100, 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, 88,
86, 85, 84, 83, 82, 81, 80, 79, 78, 77, 76, 75, 74, 73, 72,
70, 69, 68, 67, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56,
54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40,
38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24,
22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 6,
5, 4, 3, 2, 1, 0
] , 'B'),
array ( [
255, 254, 253, 252, 251, 250, 249, 248, 246, 245, 244, 243,
242, 241, 240, 239, 238, 237, 236, 235, 234, 233, 232, 230,
229, 228, 227, 226, 225, 224, 223, 222, 221, 220, 219, 218,
217, 216, 214, 213, 212, 211, 210, 209, 208, 207, 206, 205,
204, 203, 202, 201, 200, 198, 197, 196, 195, 194, 193, 192,
291, 190, 189, 188, 187, 186, 185, 184, 182, 181, 180, 179,
278, 177, 176, 175, 174, 173, 172, 171, 170, 169, 168, 166,
265, 164, 163, 162, 161, 160, 159, 158, 157, 156, 155, 154,
253, 152, 150, 149, 148, 147, 146, 145, 144, 143, 142, 141,
240, 139, 138, 137, 136, 134, 133, 132, 131, 130, 129, 128,
127, 126, 125, 124, 123, 122, 121, 120, 118, 117, 116, 115,
114, 113, 112, 111, 110, 109, 108, 107, 106, 105, 104, 102,
101, 100, 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, 88, 86,
85, 84, 83, 82, 81, 80, 79, 78, 77, 76, 75, 74, 73, 72, 70,
69, 68, 67, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 54,
53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 38,
37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 22,
21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 6, 5,
4, 3, 2, 1, 0
] , 'B'),
array ( [
255, 254, 253, 252, 251, 250, 249, 248, 246, 245, 244, 243,
242, 241, 240, 239, 238, 237, 236, 235, 234, 233, 232, 230,
229, 228, 227, 226, 225, 224, 223, 222, 221, 220, 219, 218,
217, 216, 214, 213, 212, 211, 210, 209, 208, 207, 206, 205,
204, 203, 202, 201, 200, 198, 197, 196, 195, 194, 193, 192,
191, 190, 189, 188, 187, 186, 185, 184, 182, 181, 180, 179,
178, 177, 176, 175, 174, 173, 172, 171, 170, 169, 168, 166,
165, 164, 163, 162, 161, 160, 159, 158, 157, 156, 155, 154,
153, 152, 150, 149, 148, 147, 146, 145, 144, 143, 142, 141,
140, 139, 138, 137, 136, 134, 133, 132, 131, 130, 129, 128,
127, 126, 125, 124, 123, 122, 121, 120, 118, 117, 116, 115,
114, 113, 112, 111, 110, 109, 108, 107, 106, 105, 104, 102,
101, 100, 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, 88,
86, 85, 84, 83, 82, 81, 80, 79, 78, 77, 76, 75, 74, 73, 72,
70, 69, 68, 67, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56,
54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40,
38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24,
22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8,
6, 5, 4, 3, 2, 1, 0
] , 'B')
]
}
def split_palette ( * name) :
"""
split_palette
or split_palette ("palette_name.gp")
split the current palette or the specified palette into two
parts; colors 0 to 99 will be a compressed version of the
original, while colors 100 to 199 will be a gray scale.
"""
if len (name) > 0 :
dum = palette (name [0])
del dum
r = zeros (240, 'B')
g = zeros (240, 'B')
b = zeros (240, 'B')
dum = palette (r, g, b, query = 1)
del dum
try : # r may be all zeros, in which case the following will fail:
n = max (nonzero (r)) + 1 # (Figure out how many entries there are)
except :
n = 0
if n < 100 :
dum = palette ("earth.gp")
dum = palette (r, g, b, query = 1)
del dum
n = max (max (nonzero (r)), max (nonzero (g)),
max (nonzero (b))) + 1
newr = zeros (200, 'B')
newg = zeros (200, 'B')
newb = zeros (200, 'B')
newr [0:100] = interp (r [0:n].astype (Float), arange (n, dtype = Float ),
arange (100, dtype = Float ) * n / 100).astype ('B')
newg [0:100] = interp (g [0:n].astype (Float), arange (n, dtype = Float ),
arange (100, dtype = Float ) * n / 100).astype ('B')
newb [0:100] = interp (b [0:n].astype (Float), arange (n, dtype = Float ),
arange (100, dtype = Float ) * n / 100).astype ('B')
newr [100:200] = (arange (100, dtype = Int) * 255 / 99).astype ('B')
newg [100:200] = (arange (100, dtype = Int) * 255 / 99).astype ('B')
newb [100:200] = (arange (100, dtype = Int) * 255 / 99).astype ('B')
palette (newr, newg, newb)
def split_bytscl (x, upper, cmin = None, cmax = None) :
"""
split_bytscl (x, upper, cmin = None, cmax = None)
as bytscl function, but scale to the lower half of a split
palette (0-99, normally the color scale) if the second parameter
is zero or nil, or the upper half (100-199, normally the gray
scale) if the second parameter is non-zero.
"""
x = bytscl (x, cmin = cmin, cmax = cmax, top = 99).astype('B')
if upper :
x = x + 100
return x
def _pl3tree (tree, minmax) :
# tree is a 4-element list like this:
# [plane, back_tree, inplane_leaf, front_tree]
# plane= tree [0] is None if this is just a leaf
# in which case, only inplane_leaf is not None
# back_tree= tree [1] is the part behind plane
# inplane_leaf= tree [2] is the part in the plane itself
# front_tree= tree [3] is the part in front of plane
if tree == None or tree == [] :
return None
if tree [0] == None or tree [0] == [] :
# only the leaf is non-nil (but not a plane)
return _pl3leaf ( tree [2], 1, minmax)
# apply the 3D coordinate transform to two points along the
# normal of the splitting plane to judge which is in front
xyz = get3_xy (array ( [ [0., 0., 0.],
[tree [0] [0], tree [0] [1], tree [0] [2]]], Float), 1)
[x, y, z] = [xyz [:, 0], xyz [:, 1], xyz [:, 2]]
# plot the parts in order toward the current viewpoint
if z [1] >= z [0] :
q1 = _pl3tree (tree [1], minmax)
q2 = _pl3leaf (tree [2], 0, minmax)
q3 = _pl3tree (tree [3], minmax)
else :
q1 = _pl3tree (tree [3], minmax)
q2 = _pl3leaf (tree [2], 0, minmax)
q3 = _pl3tree (tree [1], minmax)
if q1 != None :
if q2 != None and q3 == None :
return [min (q2 [0], q1 [0]),
max (q2 [1], q1 [1]),
min (q2 [2], q1 [2]),
max (q2 [3], q1 [3])]
elif q2 == None and q3 != None :
return [min (q3 [0], q1 [0]),
max (q3 [1], q1 [1]),
min (q3 [2], q1 [2]),
max (q3 [3], q1 [3])]
elif q2 != None and q3 != None :
return [min (q3 [0], q2 [0], q1 [0]),
max (q3 [1], q2 [1], q1 [1]),
min (q3 [2], q2 [2], q1 [2]),
max (q3 [3], q2 [3], q1 [3])]
else :
return q1
elif q2 != None :
if q3 == None :
return q2
else :
return [min (q2 [0], q3 [0]),
max (q2 [1], q3 [1]),
min (q2 [2], q3 [2]),
max (q2 [3], q3 [3])]
elif q3 != None :
return q3
else :
return None
## from lp import *
def _pl3leaf (leaf, not_plane, minmax) :
# count number of polys, number of vertices
_nverts = _xyzverts = 0
if type (leaf) == ListType and type (leaf [0]) == ListType :
for i in range (len (leaf)) :
[_nverts, _xyzverts] = _pl3tree_count ( leaf [i], _nverts, _xyzverts )
else :
[_nverts, _xyzverts] = _pl3tree_count ( leaf , _nverts, _xyzverts)
# accumulate polys and vertices into a single polygon list
# The type of array required for palettes is "Py_GpColor",
# which translates to "PyArray_UBYTE", which is selected
# with a second argument of 'B' to the zeros() function.
## _values = zeros (_nverts, 'B') # See below
old_nverts = _nverts
_nverts = zeros (_nverts, Int)
_x = zeros (_xyzverts, Float )
_y = zeros (_xyzverts, Float )
if (not_plane) :
# Not just straight assignment; make _z a separate copy
_z = zeros (_xyzverts, Float )
else :
_z = None
_list = 1
_vlist = 1
if type (leaf) == ListType and type (leaf [0]) == ListType :
if leaf [0] [2] != "bg" :
_values = zeros (old_nverts, 'B')
else :
_values = "bg"
for i in range (len (leaf)) :
[_list, _vlist, _edges] = _pl3tree_accum ( leaf [i] , not_plane,
_x, _y, _z, _list, _vlist, _values, _nverts, minmax)
else :
if leaf [2] != "bg" :
_values = zeros (old_nverts, 'B')
else :
_values = "bg"
[_list, _vlist, _edges] = _pl3tree_accum ( leaf , not_plane,
_x, _y, _z, _list, _vlist, _values, _nverts, minmax)
# sort the single polygon list
if not_plane :
[_list, _vlist] = sort3d (_z, _nverts)
_nverts = take (_nverts, _list,axis=0)
if _values != "bg" :
_values = take (_values, _list,axis=0)
_x = take (_x, _vlist,axis=0)
_y = take (_y, _vlist,axis=0)
_square = get_square_ ( )
[_xfactor, _yfactor] = get_factors_ ()
xmax = max (_x)
xmin = min (_x)
ymax = max (_y)
ymin = min (_y)
xdif = xmax - xmin
ydif = ymax - ymin
if _xfactor != 1. :
xmax = xmax + (_xfactor - 1.) * xdif /2.
xmin = xmin - (_xfactor - 1.) * xdif /2.
if _yfactor != 1. :
ymax = ymax + (_yfactor - 1.) * ydif /2.
ymin = ymin - (_yfactor - 1.) * ydif /2.
if _square :
xdif = xmax - xmin
ydif = ymax - ymin
if xdif > ydif :
dif = (xdif - ydif) / 2.
ymin = ymin - dif
ymax = ymax + dif
elif ydif > xdif :
dif = (ydif - xdif) / 2.
xmin = xmin - dif
xmax = xmax + dif
if _values == "bg" :
_values = None
plfp (_values, _y, _x, _nverts, legend = "", edges = _edges)
return [xmin, xmax, ymin, ymax]
def _pl3tree_count (item, _nverts, _xyzverts) :
return [_nverts + len (item [0]), _xyzverts + len (ravel (item [1])) / 3]
def _pl3tree_accum (item, not_plane, _x, _y, _z, _list, _vlist, _values,
_nverts, minmax) :
# (ZCM 2/24/97) Add _x, _y, _z , _list, _vlist, _nverts as parameters to
# avoid use of globals. return the new values of _list, _vlist.
# (ZCM 7/16/97) Return item [6] (whether to show edges)
# (ZCM 7/17/97) Add parameter minmax to normalize values
# N. B.:
# item [0] is nverts
# item [1] is xyzverts
# item [2] is values (if present)
# item [3] is cmin (if present)
# item [4] is cmax (if present)
# item [5] is split (1 = split the palette, 0 = do not split)
# item [6] is edges (1 = show edges, 0 = do not show edges)
# I have cleaned up what I think is extremely obscure Yorick code
# apparently designed to avoid some overhead.
# N. B. avoid splitting the palette if split is 0. (ZCM 4/23/97)
_xyzverts = array (item [1], copy = 1) # protect copy in tree
# Normalize copy (I'm only going to do this if it's an
# isosurface or is not a plane or has multiple components.
# There is a real problem here.
# You get bad distortion without doing this if one coordinate
# is many orders of magnitude larger than the others but the
# others have significant figues. You also get bad distortion
# by doing this in the case of a single plane section
# when one coordinate is insignificant with
# respect to the others and doesn't have significant digits.
# It is awfully hard to come up with a numerical criterion for this.)
if item [2] == None or not_plane or has_multiple_components ():
minx = minmax [0]
maxx = minmax [1]
miny = minmax [2]
maxy = minmax [3]
minz = minmax [4]
maxz = minmax [5]
_xyzverts [:, 0] = (_xyzverts [:, 0] - minx) / (maxx - minx)
_xyzverts [:, 1] = (_xyzverts [:, 1] - miny) / (maxy - miny)
_xyzverts [:, 2] = (_xyzverts [:, 2] - minz) / (maxz - minz)
if item [2] == None :
# this is an isosurface to be shaded (no values specified)
_xyzverts = get3_xy (_xyzverts, 1)
# accumulate nverts and values
incr = len (item [0])
_nverts [ _list - 1: _list - 1 + incr] = item [0]
if item [5] != 0 :
_values [ _list - 1: _list - 1 + incr] = split_bytscl (
get3_light (_xyzverts, item [0]), 1, cmin = 0.0,
cmax = item [4]).astype ('B')
else : # no split
_values [ _list - 1: _list - 1 + incr] = bytscl (
get3_light (_xyzverts, item [0]), cmin = 0.0,
cmax = item [4]).astype ('B')
_list = _list + incr
# accumulate x, y, and z
incr = shape (_xyzverts) [0]
_x [_vlist - 1:_vlist - 1 + incr] = _xyzverts [:, 0]
_y [_vlist - 1:_vlist - 1 + incr] = _xyzverts [:, 1]
if not_plane :
_z [_vlist - 1:_vlist - 1 + incr] = _xyzverts [:, 2]
_vlist = _vlist + incr
else :
# this is to be pseudo-colored since values are given
if (not_plane) :
__xyz = get3_xy (_xyzverts, 1)
else :
__xyz = get3_xy (_xyzverts, 0)
# accumulate nverts and values
incr = len (item [0])
_nverts [ _list - 1: _list - 1 + incr] = item [0]
if item [2] != "bg" :
if (item [2]).dtype.char != 'B' :
if item [5] != 0 :
_values [ _list - 1: _list - 1 + incr] = split_bytscl (
item [2], 0, cmin = item [3], cmax = item [4]).astype ('B')
else :
_values [ _list - 1: _list - 1 + incr] = bytscl (
item [2], cmin = item [3], cmax = item [4]).astype ('B')
else :
_values [ _list - 1: _list - 1 + incr] = item [2]
_list = _list + incr
# accumulate x, y, and z
incr = shape (__xyz) [0]
_x [_vlist - 1:_vlist - 1 + incr] = __xyz [:, 0]
_y [_vlist - 1:_vlist - 1 + incr] = __xyz [:, 1]
if not_plane :
_z [_vlist - 1:_vlist - 1 + incr] = __xyz [:, 2]
_vlist = _vlist + incr
return [_list, _vlist, item [6]]
def _pl3tree_add (leaf, plane, tree) :
if tree != None and tree != [] and \
not is_scalar (tree) and tree [0] != None :
# tree has slicing plane, slice new leaf or plane and descend
[back, leaf1] = _pl3tree_slice (tree [0], leaf)
if back :
if len (tree) >= 2 and tree [1] != None and tree [1] != [] :
_pl3tree_add (back, plane, tree [1])
else :
tree [1] = [None, [], back, []]
if (leaf1) :
if len (tree) >= 4 and tree [3] != None and tree [3] != [] :
_pl3tree_add (leaf1, plane, tree [3])
else :
tree [3] = [None, [], leaf1, []]
elif plane != None :
# tree is just a leaf, but this leaf has slicing plane
tree [0] = plane
tmp = tree [2]
tree [2] = leaf
leaf = tmp # swap new leaf with original leaf
[back, leaf1] = _pl3tree_slice (plane, leaf)
if (back) :
tree [1] = [None, [], back, []]
if (leaf1) :
tree [3] = [None, [], leaf1, []]
else :
# tree is just a leaf and this leaf has no slicing plane
tree [2] = leaf + tree [2]
return
def _pl3tree_slice (plane, leaf) :
back = frnt = None
for ll in leaf :
# each item in the leaf list is itself a list
nvf = ll [0]
if nvf != None :
nvb = array (nvf, copy = 1)
else :
nvb = None
xyzf = ll [1]
if xyzf != None :
xyzb = array (xyzf, copy = 1)
else :
xyzb = None
valf = ll [2]
if valf != None :
tpc = valf.dtype.char
valb = array (valf, copy = 1)
else :
valb = None
if len (ll) > 4 :
ll4 = ll [4]
else :
ll4 = None
if len (ll) > 5 :
ll5 = ll [5]
else :
ll5 = 1
if len (ll) > 6 :
ll6 = ll [6]
else :
ll6 = 0
[nvf, xyzf, valf, nvb, xyzb, valb] = \
slice2x (plane, nvf, xyzf, valf)
if valf != None:
valf = valf.astype (tpc)
if valb != None:
valb = valb.astype (tpc)
if nvf != None :
if frnt != None :
frnt = [ [nvf, xyzf, valf, ll [3], ll4, ll5, ll6]] + frnt
else :
frnt = [ [nvf, xyzf, valf, ll [3], ll4, ll5, ll6]]
if nvb != None :
if back != None :
back = [ [nvb, xyzb, valb, ll [3], ll4, ll5, ll6]] + back
else :
back = [ [nvb, xyzb, valb, ll [3], ll4, ll5, ll6]]
return [back, frnt]
_Pl3tree_prtError = "Pl3tree_prtError"
def pl3tree_prt () :
_draw3_list = get_draw3_list_ ()
_draw3_n = get_draw3_n_ ()
if len (_draw3_list) >= _draw3_n :
tree = _draw3_list [_draw3_n:]
if tree == None or tree == [] or tree [0] != pl3tree :
print "<current 3D display not a pl3tree>"
# raise _Pl3tree_prtError, "<current 3D display not a pl3tree>"
else :
tree = tree [1] [0]
_pl3tree_prt (tree, 0)
def pl3_other_prt(tree = None):
if tree == None:
pl3tree_prt ()
else :
if tree == None or tree == []:
print "<current 3D display not a pl3tree>"
else :
_pl3tree_prt (tree, 0)
def _pl3tree_prt (tree, depth) :
if tree == None or tree == [] :
return
indent = (" " * (1 + 2 * depth)) [0:-1]
print indent + "+DEPTH= " + `depth`
if len (tree) != 4 :
print indent + "***error - not a tree"
print indent + "plane= " + `tree [0]`
back = tree [1]
list = tree [2]
frnt = tree [3]
if back == None or back == [] :
print indent + "back = []"
else :
_pl3tree_prt (back, depth + 1)
for leaf in list :
print indent + "leaf length= " + `len (leaf)`
print indent + "npolys= " + `len (leaf [0])` + \
", nverts= " + `sum (leaf [0],axis=0)` + ", max= " + `max (leaf [0])`
print indent + "nverts= " + `shape (leaf [1]) [0]` + \
", nvals= " + `len (leaf [2])`
if frnt == None or frnt == [] :
print indent + "frnt = []"
else :
_pl3tree_prt (frnt, depth + 1)
print indent + "+DEPTH= " + `depth`
# ------------------------------------------------------------------------
def _isosurface_slicer (m3, chunk, iso_index, _value) :
# Have to remember here that getv3 can either return an array of
# values, or a 2-list consisting of values and the corresponding cell
# indices, the latter in the case of an irregular grid.
# Note: (ZCM 2/24/97) I have fixed slicers to return the vertex
# information and what used to be the global _xyz3, or None. Hence
# returning the tuple [tmp, None].
tmp = getv3 (iso_index, m3, chunk)
if type (tmp) == ListType :
tmp[0] = tmp [0] - _value
else :
tmp = tmp - _value
return [tmp, None]
def _plane_slicer (m3, chunk, normal, projection) :
# (ZCM 2/24/97) In all cases, return x as the last element of
# the tuple. This eliminates the global _xyz3.
x = xyz3(m3,chunk)
irregular = type (chunk) == ListType and len (chunk) == 2 \
or type (chunk) == ArrayType and len (shape (chunk)) == 1 \
and type (chunk [0]) == IntType
if irregular :
# Need to return a list, the first component being the x's,
# the second being the relative cell list, and the third an offset
verts = m3 [1] [0]
cell_offset = 0
if type (verts) == ListType :
totals = m3 [1] [3]
if type (chunk) == ListType :
fin = chunk [0] [1]
else :
fin = chunk [-1]
for j in range (len (verts)) :
if fin <= totals [j] :
break
if j > 0 :
cell_offset = totals [j - 1]
if type (chunk) == ListType :
clist = arange (0, chunk [0] [1] - chunk [0] [0], dtype = Int)
else :
clist = chunk - cell_offset
# In the irregular case we know x is ncells by 3 by something
return [ [x [:,0] * normal [0] + x [:,1] * normal [1] + \
x [:,2] * normal [2] - projection, clist, cell_offset], x]
elif len (shape (x)) == 5 : # It's ncells X 3 X 2 X 2 X 2
return [x [:,0] * normal [0] + x [:,1] * normal [1] + \
x [:,2] * normal [2] - projection, x]
else : # It's 3 X ni X nj X nk
return [x [0] * normal [0] + x [1] * normal [1] + x [2] * normal [2] -\
projection, x]
def xyz3 (m3, chunk) :
"""
xyz3 (m3, chunk)
return vertex coordinates for CHUNK of 3D mesh M3. The CHUNK
may be a list of cell indices, in which case xyz3 returns a
(dimsof(CHUNK))x3x2x2x2 list of vertex coordinates. CHUNK may
also be a mesh-specific data structure used in the slice3
routine, in which case xyz3 may return a 3x(ni)x(nj)x(nk)
array of vertex coordinates. For meshes which are logically
rectangular or consist of several rectangular patches, this
is up to 8 times less data, with a concomitant performance
advantage. Use xyz3 when writing slicing functions or coloring
functions for slice3.
"""
xyz = m3 [0] [0] (m3, chunk)
return xyz
def xyz3_rect (m3, chunk) :
m3 = m3 [1]
if len (shape (chunk)) != 1 :
c = chunk
# The difference here is that our arrays are 0-based, while
# yorick's are 1-based; and the last element in a range is not
# included in the result array.
return m3 [1] [:,c [0, 0] - 1:1 + c [1, 0], c [0, 1] - 1:1 + c [1, 1] ,
c [0, 2] - 1:1 + c [1, 2]]
else :
# Need to create an array of m3 [1] values the same size and shape
# as what to_corners3 returns.
# To avoid exceedingly arcane calculations attempting to
# go backwards to a cell list, this branch returns the list
# [<function values>, chunk]
# ???????????? ^^^^^^^^^^^^
# Then it is trivial for slice3 to find a list of cell
# numbers in which fi has a negative value.
dims = m3 [0]
indices = to_corners3 (chunk, dims [1] + 1, dims [2] + 1)
no_cells = shape (indices) [0]
indices = ravel (indices)
retval = zeros ( (no_cells, 3, 2, 2, 2), Float )
m30 = ravel (m3 [1] [0, ...])
retval [:, 0, ...] = reshape (take (m30, indices,axis=0), (no_cells, 2, 2, 2))
m31 = ravel (m3 [1] [1, ...])
retval [:, 1, ...] = reshape (take (m31, indices,axis=0), (no_cells, 2, 2, 2))
m32 = ravel (m3 [1] [2, ...])
retval [:, 2, ...] = reshape (take (m32, indices,axis=0), (no_cells, 2, 2, 2))
return retval
_xyz3Error = "xyz3Error"
def xyz3_irreg (m3, chunk) :
xyz = m3 [1] [1]
if type (chunk) == ListType and len (chunk) == 2 :
no_cells = chunk [0] [1] - chunk [0] [0]
if type (m3 [1] [0]) == ListType :
totals = m3 [1] [3]
start = chunk [0] [0]
fin = chunk [0] [1]
for i in range (len (totals)) :
if fin <= totals [i] :
break
verts = m3 [1] [0] [i]
if i > 0 :
start = start - totals [i - 1]
fin = fin - totals [i - 1]
ns = verts [start:fin]
shp = shape (verts)
else :
ns = m3 [1] [0] [chunk [0] [0]:chunk [0] [1]] # This is a kXnv array
shp = shape (m3 [1] [0])
elif type (chunk) == ArrayType and len (shape (chunk)) == 1 and \
type (chunk [0]) == IntType :
# chunk is an absolute cell list
no_cells = len (chunk)
if type (m3 [1] [0]) == ListType :
totals = m3 [1] [3]
fin = max (chunk)
for i in range (len (totals)) :
if fin <= totals [i] :
break
verts = m3 [1] [0] [i]
if i > 0 :
start = totals [i - 1]
else :
start = 0
verts = m3 [1] [0] [i]
ns = take (verts, chunk - start,axis=0)
shp = shape (verts)
else :
ns = take (m3 [1] [0], chunk,axis=0)
shp = shape (m3 [1] [0])
else :
raise _xyz3Error, "chunk parameter has the wrong type."
if shp [1] == 8 : # hex
retval = zeros ( (no_cells, 3, 2, 2, 2), Float)
retval [:, 0] = \
reshape (take (xyz [0], ravel (ns),axis=0), (no_cells, 2, 2, 2))
retval [:, 1] = \
reshape (take (xyz [1], ravel (ns),axis=0), (no_cells, 2, 2, 2))
retval [:, 2] = \
reshape (take (xyz [2], ravel (ns),axis=0), (no_cells, 2, 2, 2))
elif shp [1] == 6 : # prism
retval = zeros ( (no_cells, 3, 3, 2), Float)
retval [:, 0] = \
reshape (take (xyz [0], ravel (ns),axis=0), (no_cells, 3, 2))
retval [:, 1] = \
reshape (take (xyz [1], ravel (ns),axis=0), (no_cells, 3, 2))
retval [:, 2] = \
reshape (take (xyz [2], ravel (ns),axis=0), (no_cells, 3, 2))
elif shp [1] == 5 : # pyramid
retval = zeros ( (no_cells, 3, 5), Float)
retval [:, 0] = \
reshape (take (xyz [0], ravel (ns),axis=0), (no_cells, 5))
retval [:, 1] = \
reshape (take (xyz [1], ravel (ns),axis=0), (no_cells, 5))
retval [:, 2] = \
reshape (take (xyz [2], ravel (ns),axis=0), (no_cells, 5))
elif shp [1] == 4 : # tet
retval = zeros ( (no_cells, 3, 4), Float)
retval [:, 0] = \
reshape (take (xyz [0], ravel (ns),axis=0), (no_cells, 4))
retval [:, 1] = \
reshape (take (xyz [1], ravel (ns),axis=0), (no_cells, 4))
retval [:, 2] = \
reshape (take (xyz [2], ravel (ns),axis=0), (no_cells, 4))
else :
raise _xyz3Error, "Funny number of cell faces: " + `shp [1]`
return retval
def xyz3_unif (m3, chunk) :
m3 = m3 [1]
n = m3 [1]
if len (chunk.shape) != 1 :
c = chunk
i = c [0] - 1
dn = c [1] + 1 - i
xyz = zeros ( (3, dn [0], dn [1], dn [2]), Float)
else :
dims = m3 [0]
nj = dims [1]
nk = dims [2]
njnk = nj * nk
zchunk = chunk % nk
ychunk = chunk / nk % nj
xchunk = chunk / njnk
xyz = zeros ( (len (chunk), 3, 2, 2, 2), Float )
ijk0 = array ( [zeros ( (2, 2), Int ), ones ( (2, 2), Int )])
ijk1 = array ( [ [0, 0], [1, 1]], Int )
ijk1 = array ( [ijk1, ijk1] , Int )
ijk2 = array ( [ [0, 1], [0, 1]], Int )
ijk2 = array ( [ijk2, ijk2] , Int )
if len (n) == 2: # we have dxdydz and x0y0z0
dxdydz = n [0]
x0y0z0 = n [1]
if len (shape (chunk)) != 1:
# Convert the increment and size into array coordinates
# -- consecutive values
xx = arange (dn [0], dtype = Float ) * dxdydz [0] / (dn [0] - 1)
yy = arange (dn [1], dtype = Float ) * dxdydz [1] / (dn [1] - 1)
zz = arange (dn [2], dtype = Float ) * dxdydz [2] / (dn [2] - 1)
xyz [0] = x0y0z0 [0] + i [0] * dxdydz [0] + multiply.outer (
multiply.outer ( xx, ones (dn [1], Float )),
ones (dn [2], Float ))
xyz [1] = x0y0z0 [1] + i [1] * dxdydz [0] + \
multiply.outer ( ones (dn [0], Float ), \
multiply.outer ( yy, ones (dn [2], Float )))
xyz [2] = x0y0z0 [2] + i [2] * dxdydz [0] + \
multiply.outer ( ones (dn [0], Float ), \
multiply.outer ( ones (dn [1], Float ), zz))
else :
# -- nonconsecutive values
xyz [:, 0] = add.outer ( xchunk, ijk0) * dxdydz [0] + x0y0z0 [0]
xyz [:, 1] = add.outer ( ychunk, ijk1) * dxdydz [1] + x0y0z0 [1]
xyz [:, 2] = add.outer ( zchunk, ijk2) * dxdydz [2] + x0y0z0 [2]
elif type (n) == ListType and len (n) == 3: # We have three one-dimensional arrays.
xx = n [0]
yy = n [1]
zz = n [2]
n0 = len (xx)
n1 = len (yy)
n2 = len (zz)
if len (shape (chunk)) != 1:
# Convert the increment and size into array coordinates
# -- consecutive values
xyz [0] = multiply.outer (
multiply.outer ( xx [i [0]:i [0] + n0], ones (n1, Float )), \
ones (n2, Float ))
xyz [1] = multiply.outer ( ones (n0, Float ), \
multiply.outer ( yy [i [1]: i[1] + n1], ones (n2, Float )))
xyz [2] = multiply.outer ( ones (n0, Float ), \
multiply.outer ( ones (n1, Float ), zz [i [2]: i[2] + n2]))
else :
# -- nonconsecutive values
xyz [:, 0] = reshape (take (xx, ravel (add.outer (xchunk, ijk0)),axis=0),
(len (chunk), 2, 2, 2))
xyz [:, 1] = reshape (take (yy, ravel (add.outer (ychunk, ijk1)),axis=0),
(len (chunk), 2, 2, 2))
xyz [:, 2] = reshape (take (zz, ravel (add.outer (zchunk, ijk2)),axis=0),
(len (chunk), 2, 2, 2))
return xyz
def to_corners3 (list, nj, nk) :
"""
to_corners3(list, nj, nk)
convert an array of cell indices in an (ni-1)-by-(NJ-1)-by-(NK-1)
logically rectangular grid of cells into the list of
len(LIST)-by-2-by-2-by-2 cell corner indices in the
corresponding ni-by-NJ-by-NK array of vertices.
Note that this computation in Yorick gives an absolute offset
for each cell quantity in the grid. In Yorick it is legal to
index a multidimensional array with an absolute offset. In
Python it is not. However, an array can be flattened if
necessary.
Other changes from Yorick were necessitated by row-major
order and 0-origin indices, and of course the lack of
Yorick array facilities.
"""
njnk = nj * nk
kk = list / (nk - 1)
list = list + kk + nk * (kk / (nj - 1))
adder = array ( [ [ [0, 1], [nk, nk + 1]],
[ [njnk, njnk + 1], [nk + njnk, nk + njnk + 1]]])
res = zeros ( (len (list), 2, 2, 2), Int)
for i in range (len(list)):
res [i] = adder + list [i]
return res
|