| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 
 |       SUBROUTINE ZBESY(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, CWRKR, CWRKI,
     *                 IERR)
C***BEGIN PROLOGUE  ZBESY
C***DATE WRITTEN   830501   (YYMMDD)
C***REVISION DATE  890801   (YYMMDD)
C***CATEGORY NO.  B5K
C***KEYWORDS  Y-BESSEL FUNCTION,BESSEL FUNCTION OF COMPLEX ARGUMENT,
C             BESSEL FUNCTION OF SECOND KIND
C***AUTHOR  AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
C***PURPOSE  TO COMPUTE THE Y-BESSEL FUNCTION OF A COMPLEX ARGUMENT
C***DESCRIPTION
C
C                      ***A DOUBLE PRECISION ROUTINE***
C
C         ON KODE=1, CBESY COMPUTES AN N MEMBER SEQUENCE OF COMPLEX
C         BESSEL FUNCTIONS CY(I)=Y(FNU+I-1,Z) FOR REAL, NONNEGATIVE
C         ORDERS FNU+I-1, I=1,...,N AND COMPLEX Z IN THE CUT PLANE
C         -PI.LT.ARG(Z).LE.PI. ON KODE=2, CBESY RETURNS THE SCALED
C         FUNCTIONS
C
C         CY(I)=EXP(-ABS(Y))*Y(FNU+I-1,Z)   I = 1,...,N , Y=AIMAG(Z)
C
C         WHICH REMOVE THE EXPONENTIAL GROWTH IN BOTH THE UPPER AND
C         LOWER HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND NOTATION
C         ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL FUNCTIONS
C         (REF. 1).
C
C         INPUT      ZR,ZI,FNU ARE DOUBLE PRECISION
C           ZR,ZI  - Z=CMPLX(ZR,ZI), Z.NE.CMPLX(0.0D0,0.0D0),
C                    -PI.LT.ARG(Z).LE.PI
C           FNU    - ORDER OF INITIAL Y FUNCTION, FNU.GE.0.0D0
C           KODE   - A PARAMETER TO INDICATE THE SCALING OPTION
C                    KODE= 1  RETURNS
C                             CY(I)=Y(FNU+I-1,Z), I=1,...,N
C                        = 2  RETURNS
C                             CY(I)=Y(FNU+I-1,Z)*EXP(-ABS(Y)), I=1,...,N
C                             WHERE Y=AIMAG(Z)
C           N      - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1
C           CWRKR, - DOUBLE PRECISION WORK VECTORS OF DIMENSION AT
C           CWRKI    AT LEAST N
C
C         OUTPUT     CYR,CYI ARE DOUBLE PRECISION
C           CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS
C                    CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE
C                    CY(I)=Y(FNU+I-1,Z)  OR
C                    CY(I)=Y(FNU+I-1,Z)*EXP(-ABS(Y))  I=1,...,N
C                    DEPENDING ON KODE.
C           NZ     - NZ=0 , A NORMAL RETURN
C                    NZ.GT.0 , NZ COMPONENTS OF CY SET TO ZERO DUE TO
C                    UNDERFLOW (GENERALLY ON KODE=2)
C           IERR   - ERROR FLAG
C                    IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
C                    IERR=1, INPUT ERROR   - NO COMPUTATION
C                    IERR=2, OVERFLOW      - NO COMPUTATION, FNU IS
C                            TOO LARGE OR CABS(Z) IS TOO SMALL OR BOTH
C                    IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE
C                            BUT LOSSES OF SIGNIFCANCE BY ARGUMENT
C                            REDUCTION PRODUCE LESS THAN HALF OF MACHINE
C                            ACCURACY
C                    IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA-
C                            TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI-
C                            CANCE BY ARGUMENT REDUCTION
C                    IERR=5, ERROR              - NO COMPUTATION,
C                            ALGORITHM TERMINATION CONDITION NOT MET
C
C***LONG DESCRIPTION
C
C         THE COMPUTATION IS CARRIED OUT BY THE FORMULA
C
C         Y(FNU,Z)=0.5*(H(1,FNU,Z)-H(2,FNU,Z))/I
C
C         WHERE I**2 = -1 AND THE HANKEL BESSEL FUNCTIONS H(1,FNU,Z)
C         AND H(2,FNU,Z) ARE CALCULATED IN CBESH.
C
C         FOR NEGATIVE ORDERS,THE FORMULA
C
C              Y(-FNU,Z) = Y(FNU,Z)*COS(PI*FNU) + J(FNU,Z)*SIN(PI*FNU)
C
C         CAN BE USED. HOWEVER,FOR LARGE ORDERS CLOSE TO HALF ODD
C         INTEGERS THE FUNCTION CHANGES RADICALLY. WHEN FNU IS A LARGE
C         POSITIVE HALF ODD INTEGER,THE MAGNITUDE OF Y(-FNU,Z)=J(FNU,Z)*
C         SIN(PI*FNU) IS A LARGE NEGATIVE POWER OF TEN. BUT WHEN FNU IS
C         NOT A HALF ODD INTEGER, Y(FNU,Z) DOMINATES IN MAGNITUDE WITH A
C         LARGE POSITIVE POWER OF TEN AND THE MOST THAT THE SECOND TERM
C         CAN BE REDUCED IS BY UNIT ROUNDOFF FROM THE COEFFICIENT. THUS,
C         WIDE CHANGES CAN OCCUR WITHIN UNIT ROUNDOFF OF A LARGE HALF
C         ODD INTEGER. HERE, LARGE MEANS FNU.GT.CABS(Z).
C
C         IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
C         MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS
C         LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR.
C         CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN
C         LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG
C         IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
C         DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
C         IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS
C         LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS
C         MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE
C         INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS
C         RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3
C         ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION
C         ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION
C         ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN
C         THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT
C         TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS
C         IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC.
C         SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES.
C
C         THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
C         BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
C         ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
C         SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
C         ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
C         ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
C         CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
C         HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
C         ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
C         SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
C         THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
C         0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
C         THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
C         COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
C         BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
C         COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
C         MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
C         THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
C         OR -PI/2+P.
C
C***REFERENCES  HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
C                 AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
C                 COMMERCE, 1955.
C
C               COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C                 BY D. E. AMOS, SAND83-0083, MAY, 1983.
C
C               COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C                 AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
C
C               A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
C                 1018, MAY, 1985
C
C               A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
C                 MATH. SOFTWARE, 1986
C
C***ROUTINES CALLED  ZBESH,I1MACH,D1MACH
C***END PROLOGUE  ZBESY
C
C     COMPLEX CWRK,CY,C1,C2,EX,HCI,Z,ZU,ZV
      DOUBLE PRECISION CWRKI, CWRKR, CYI, CYR, C1I, C1R, C2I, C2R,
     * ELIM, EXI, EXR, EY, FNU, HCII, STI, STR, TAY, ZI, ZR, DEXP,
     * D1MACH, ASCLE, RTOL, ATOL, AA, BB, TOL
      INTEGER I, IERR, K, KODE, K1, K2, N, NZ, NZ1, NZ2, I1MACH
      DIMENSION CYR(N), CYI(N), CWRKR(N), CWRKI(N)
C***FIRST EXECUTABLE STATEMENT  ZBESY
      IERR = 0
      NZ=0
      IF (ZR.EQ.0.0D0 .AND. ZI.EQ.0.0D0) IERR=1
      IF (FNU.LT.0.0D0) IERR=1
      IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
      IF (N.LT.1) IERR=1
      IF (IERR.NE.0) RETURN
      HCII = 0.5D0
      CALL ZBESH(ZR, ZI, FNU, KODE, 1, N, CYR, CYI, NZ1, IERR)
      IF (IERR.NE.0.AND.IERR.NE.3) GO TO 170
      CALL ZBESH(ZR, ZI, FNU, KODE, 2, N, CWRKR, CWRKI, NZ2, IERR)
      IF (IERR.NE.0.AND.IERR.NE.3) GO TO 170
      NZ = MIN0(NZ1,NZ2)
      IF (KODE.EQ.2) GO TO 60
      DO 50 I=1,N
        STR = CWRKR(I) - CYR(I)
        STI = CWRKI(I) - CYI(I)
        CYR(I) = -STI*HCII
        CYI(I) = STR*HCII
   50 CONTINUE
      RETURN
   60 CONTINUE
      TOL = DMAX1(D1MACH(4),1.0D-18)
      K1 = I1MACH(15)
      K2 = I1MACH(16)
      K = MIN0(IABS(K1),IABS(K2))
      R1M5 = D1MACH(5)
C-----------------------------------------------------------------------
C     ELIM IS THE APPROXIMATE EXPONENTIAL UNDER- AND OVERFLOW LIMIT
C-----------------------------------------------------------------------
      ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
      EXR = DCOS(ZR)
      EXI = DSIN(ZR)
      EY = 0.0D0
      TAY = DABS(ZI+ZI)
      IF (TAY.LT.ELIM) EY = DEXP(-TAY)
      IF (ZI.LT.0.0D0) GO TO 90
      C1R = EXR*EY
      C1I = EXI*EY
      C2R = EXR
      C2I = -EXI
   70 CONTINUE
      NZ = 0
      RTOL = 1.0D0/TOL
      ASCLE = D1MACH(1)*RTOL*1.0D+3
      DO 80 I=1,N
C       STR = C1R*CYR(I) - C1I*CYI(I)
C       STI = C1R*CYI(I) + C1I*CYR(I)
C       STR = -STR + C2R*CWRKR(I) - C2I*CWRKI(I)
C       STI = -STI + C2R*CWRKI(I) + C2I*CWRKR(I)
C       CYR(I) = -STI*HCII
C       CYI(I) = STR*HCII
        AA = CWRKR(I)
        BB = CWRKI(I)
        ATOL = 1.0D0
        IF (DMAX1(DABS(AA),DABS(BB)).GT.ASCLE) GO TO 75
          AA = AA*RTOL
          BB = BB*RTOL
          ATOL = TOL
   75   CONTINUE
        STR = (AA*C2R - BB*C2I)*ATOL
        STI = (AA*C2I + BB*C2R)*ATOL
        AA = CYR(I)
        BB = CYI(I)
        ATOL = 1.0D0
        IF (DMAX1(DABS(AA),DABS(BB)).GT.ASCLE) GO TO 85
          AA = AA*RTOL
          BB = BB*RTOL
          ATOL = TOL
   85   CONTINUE
        STR = STR - (AA*C1R - BB*C1I)*ATOL
        STI = STI - (AA*C1I + BB*C1R)*ATOL
        CYR(I) = -STI*HCII
        CYI(I) =  STR*HCII
        IF (STR.EQ.0.0D0 .AND. STI.EQ.0.0D0 .AND. EY.EQ.0.0D0) NZ = NZ
     *   + 1
   80 CONTINUE
      RETURN
   90 CONTINUE
      C1R = EXR
      C1I = EXI
      C2R = EXR*EY
      C2I = -EXI*EY
      GO TO 70
  170 CONTINUE
      NZ = 0
      RETURN
      END
 |