1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
/* zeta.c
*
* Riemann zeta function of two arguments
*
*
*
* SYNOPSIS:
*
* double x, q, y, zeta();
*
* y = zeta( x, q );
*
*
*
* DESCRIPTION:
*
*
*
* inf.
* - -x
* zeta(x,q) = > (k+q)
* -
* k=0
*
* where x > 1 and q is not a negative integer or zero.
* The Euler-Maclaurin summation formula is used to obtain
* the expansion
*
* n
* - -x
* zeta(x,q) = > (k+q)
* -
* k=1
*
* 1-x inf. B x(x+1)...(x+2j)
* (n+q) 1 - 2j
* + --------- - ------- + > --------------------
* x-1 x - x+2j+1
* 2(n+q) j=1 (2j)! (n+q)
*
* where the B2j are Bernoulli numbers. Note that (see zetac.c)
* zeta(x,1) = zetac(x) + 1.
*
*
*
* ACCURACY:
*
*
*
* REFERENCE:
*
* Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals,
* Series, and Products, p. 1073; Academic Press, 1980.
*
*/
/*
Cephes Math Library Release 2.0: April, 1987
Copyright 1984, 1987 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
#include "mconf.h"
#ifndef ANSIPROT
double fabs(), pow(), floor();
#endif
extern double MAXNUM, MACHEP, NAN;
/* Expansion coefficients
* for Euler-Maclaurin summation formula
* (2k)! / B2k
* where B2k are Bernoulli numbers
*/
static double A[] = {
12.0,
-720.0,
30240.0,
-1209600.0,
47900160.0,
-1.8924375803183791606e9, /*1.307674368e12/691*/
7.47242496e10,
-2.950130727918164224e12, /*1.067062284288e16/3617*/
1.1646782814350067249e14, /*5.109094217170944e18/43867*/
-4.5979787224074726105e15, /*8.028576626982912e20/174611*/
1.8152105401943546773e17, /*1.5511210043330985984e23/854513*/
-7.1661652561756670113e18 /*1.6938241367317436694528e27/236364091*/
};
/* 30 Nov 86 -- error in third coefficient fixed */
double zeta(x,q)
double x,q;
{
int i;
double a, b, k, s, t, w;
if( x == 1.0 )
goto retinf;
if( x < 1.0 )
{
domerr:
mtherr( "zeta", DOMAIN );
return(NAN);
}
if( q <= 0.0 )
{
if(q == floor(q))
{
mtherr( "zeta", SING );
retinf:
return( MAXNUM );
}
if( x != floor(x) )
goto domerr; /* because q^-x not defined */
}
/* Euler-Maclaurin summation formula */
/*
if( x < 25.0 )
*/
{
/* Permit negative q but continue sum until n+q > +9 .
* This case should be handled by a reflection formula.
* If q<0 and x is an integer, there is a relation to
* the polyGamma function.
*/
s = pow( q, -x );
a = q;
i = 0;
b = 0.0;
while( (i < 9) || (a <= 9.0) )
{
i += 1;
a += 1.0;
b = pow( a, -x );
s += b;
if( fabs(b/s) < MACHEP )
goto done;
}
w = a;
s += b*w/(x-1.0);
s -= 0.5 * b;
a = 1.0;
k = 0.0;
for( i=0; i<12; i++ )
{
a *= x + k;
b /= w;
t = a*b/A[i];
s = s + t;
t = fabs(t/s);
if( t < MACHEP )
goto done;
k += 1.0;
a *= x + k;
b /= w;
k += 1.0;
}
done:
return(s);
}
/* Basic sum of inverse powers */
/*
pseres:
s = pow( q, -x );
a = q;
do
{
a += 2.0;
b = pow( a, -x );
s += b;
}
while( b/s > MACHEP );
b = pow( 2.0, -x );
s = (s + b)/(1.0-b);
return(s);
*/
}
|